Daily Tech Digest - December 28, 2025


Quote for the day:

"The best reason to start an organization is to make meaning; to create a product or service to make the world a better place." -- Guy Kawasaki



PIN It to Win It: India’s digital address revolution

DIGIPIN is a nationwide geo-coded addressing system developed by the Department of Posts in collaboration with IIT Hyderabad. It divides India into approximately 4m x 4m grids and assigns each grid a unique 10-character alphanumeric code based on latitude and longitude coordinates. The ability of DIGIPIN to function as a persistent, interoperable location identifier across India’s dispersed public and private networks is what gives it its real power. Unlike normal addresses, which depend on textual descriptions, a DIGIPIN condenses the geo-coordinates, administrative metadata and unique spatial identifiers into a 10-character alphanumeric string. Because of which, DIGIPIN is readable by machines, compatible with maps and unaffected by changes in naming conventions. When combined with systems like Aadhaar (identity), UPI (payments), ULPIN (land) and UPIC (property), DIGIPIN can enable seamless KYC validation, last-mile delivery automation, digital land titling and geographic analytics. ... For DIGIPIN to become the default address format in India, it has to succeed across three critical dimensions: A 10-character code might be accurate, but is it memorable? For a busy delivery rider or a rural farmer, remembering and sharing it must be easier than reciting a landmark-heavy address. The code must be accepted across platforms – Aadhaar, land registries, GST, KYC forms, food delivery apps and banks. 


Deepfakes leveled up in 2025 – here’s what’s coming next

Over the course of 2025, deepfakes improved dramatically. AI-generated faces, voices and full-body performances that mimic real people increased in quality far beyond what even many experts expected would be the case just a few years ago. They were also increasingly used to deceive people. For many everyday scenarios — especially low-resolution video calls and media shared on social media platforms — their realism is now high enough to reliably fool nonexpert viewers. In practical terms, synthetic media have become indistinguishable from authentic recordings for ordinary people and, in some cases, even for institutions. And this surge is not limited to quality. ... Looking forward, the trajectory for next year is clear: Deepfakes are moving toward real-time synthesis that can produce videos that closely resemble the nuances of a human’s appearance, making it easier for them to evade detection systems. The frontier is shifting from static visual realism to temporal and behavioral coherence: models that generate live or near-live content rather than pre-rendered clips. ... As these capabilities mature, the perceptual gap between synthetic and authentic human media will continue to narrow. The meaningful line of defense will shift away from human judgment. Instead, it will depend on infrastructure-level protections. These include secure provenance such as media signed cryptographically, and AI content tools that use the Coalition for Content Provenance and Authenticity specifications.


Your Core Is Being Retired. Now What?

Eventually, all financial institutions will find themselves in the position of voluntarily or involuntarily going through a core migration. The stock market hammered one of the largest core processing companies in the world recently, effectively admitting publicly what most of the industry has known for years: They were more concerned about financial engineering of the share price than they were about product engineering a better outcome for their clients. Unfortunately, the market also learned recently that the largest core processing provider will soon be making some big changes and consolidating many of its core systems. It’s hard to imagine how a software company can effectively support and maintain this many diverse core platforms – and the rationale behind this decision seems obvious and needed. However, this is an incredibly risky inflection point for banks and credit unions on platforms targeted for retirement. The hope and bet is that most clients will be incentivized to migrate to one of the remaining cores. ... The retirement of your core is an opportunity to rethink the foundation of your institution’s future. While no core conversion is easy, those who approach it strategically, armed with data, foresight, and the right partners, can turn a forced migration into a competitive advantage. The next generation of cores promises greater flexibility, integration and scalability, but only for institutions that negotiate wisely, plan deliberately, and take control of their own timelines before someone else does.


Whether AI is a bubble or revolution, how does software survive?

Bubble or not, AI has certainly made some waves, and everyone is looking to find the right strategy. It’s already caused a great deal of disruption—good and bad—among software companies large and small. The speed at which the technology has moved from its coming out party, has been stunning; costs have dropped, hardware and software have improved, and the mediocre version of many jobs can be replicated in a chat window. It’s only going to continue. “AI is positioned to continuously disrupt itself, said McConnell. “It's going to be a constant disruption. If that's true, then all of the dollars going to companies today are at risk because those companies may be disrupted by some new technology that's just around the corner.” First up on the list of disruption targets: startups. If you’re looking to get from zero to market fit, you don’t need to build the same kind of team like you used to. “Think about the ratios between how many engineers there are to salespeople,” said Tunguz. “We knew what those were for 10 or 15 years, and now none of those ratios actually hold anymore. If we are really are in a position that a single person can have the productivity of 25, management teams look very different. Hiring looks extremely different.” That’s not to say there won’t be a need for real human coders. We’ve seen how badly the vibe coding entrepreneurs get dunked on when they put their shoddy apps in front of a merciless internet. 


Why Windows Just Became Disruptible in the Agentic OS Era

Identity is where the cracks show early. Traditional Windows environments assume a human logging into a device, launching applications, and accessing resources under their account. Entra ID and Active Directory groups, role-based access control across Microsoft 365, and Conditional Access policies all grew out of that pattern. An agentic environment forces a different set of questions. Who is authenticated when an agent books a conference room, issues a purchase order draft, or requests a sensitive dataset? How should policy cope with agents that mix personal and organizational context, or that act for multiple managers across overlapping projects? What happens when an internal agent needs to negotiate with an external agent that belongs to a partner or supplier? ... Agentic systems improve as they see more behavior. Early customers who allow their interactions, decisions, and corrections to be observed become de facto trainers for the platform. That creates a race to capture training data, not just market share. The same is true for the user experience. How people “vibe reengineer” processes isn’t optimized yet. The vendor that gets that experience right will empower AI-savvy users in new ways, and deep knowledge about those emerging processes will be hard to copy. It is likely, however, that more than one approach will emerge, which will set up the next round of competition.


SaaS attacks surge as boards turn to AI for defence

"SaaS security, together with concerns around the secure use of AI moved from a niche security initiative to a boardroom imperative. The 2025 Verizon Data Breach Investigations Report (DBIR) called out a doubling of breaches involving third-party applications stemming from misconfigured SaaS platforms and unauthorized integrations, particularly those exploited by threat actors through scanning and credential stuffing," said Soby, Co-founder and Chief Technology Officer, AppOmni. ... "Security technologies leveraging AI agents have the potential to move the industry closer towards security operations autonomy. In fact, we're seeing innovative advancements there, especially in the development of SOC AI agents," said Ruzzi, Director of AI, AppOmni. She highlighted the Model Context Protocol, an emerging technical standard, as a mechanism that can act as a universal adapter between AI models and external systems. ... She warned that AI agents still face challenges when they deal with large and complex data sets. "But organizations need to look beyond the AI hype of agents to implement the technology in a way that will be truly useful for them. Handling large volumes of complex data still presents a challenge here. Agents are most useful when assigned to perform a targeted task that handles smaller volumes of simpler data," said Ruzzi.


Why CIOs must lead AI experimentation, not just govern it

The role of IT leadership is undergoing a profound transformation. We were once the gatekeepers of technology. Then came SaaS, which began to democratize technology access, putting powerful tools directly into the hands of employees. AI represents an even more significant shift. It can feel intimidating, and as leaders, we have a crucial responsibility to demystify it and make it accessible. Much like the dot.com boom, we're witnessing a transformative moment, and IT leaders must harness this potential to drive innovation. ... The key to successful AI adoption is fostering a culture of learning and experimentation. Employees at all levels, whether developers or non-developers, executives or individual contributors, must have the opportunity to get their hands on AI tools and understand how they work. Some companies are having employees train AI models and learn prompt engineering, which is a fantastic way to remove the mystery and show people how AI truly functions. We’re encouraging our own teams to write prompts and train chatbots, aiming for AI to become a true copilot in their daily tasks. Think of it as akin to an athlete who trains consistently, refining their skills to achieve better results. That’s the feeling we want our employees to have with AI — a tool that makes their work faster, better and, ultimately, more meaningful and joyful. My own mother’s relationship with her voice assistant, which has become an integral part of her life, is a simple reminder of how seamlessly technology can integrate when it’s genuinely helpful.


AI, fraud and market timing drive biometrics consolidation in 2025 … and maybe 2026

Fraud has overwhelmed organizations of all kinds, and Verley emphasizes the degree to which this has pulled enterprise teams and market players in adjacent areas together. AI has contributed to this wave of fraud in several important ways. The barrier to entry has been lowered, and forgeries are now scalable in a way cybercriminals could only have dreamed of just a few years ago. The proliferation of generative AI tools has also changed the state of the art in biometric liveness detection, with injection attack detection (IAD) now table stakes for secure remote user onboarding the way presentation attack detection (PAD) has been for the last several years. ... Reducing fraud is part of the motivation behind the EU Digital Identity Wallet, which launches in the year ahead. By tying digital IDs to government-issued biometric documents with electronic chips. “That’s going to mean a huge uptick in onboarding people to issue them these new credentials that are going to be big in identity verification, and that’s going to be the best way to do that,” Goode says. At the same time, businesses that had no choice but to pay for identity services during pandemic now have more choice, Verley says. So providers are emphasizing fraud protection to justify the value of their products. ... Uncertainty is a central feature of the AI market landscape, and Goode notes the possibility that if predictions of the AI market popping like a bubble in 2026 come true, restricted credit availability “could put a damper on acquisitions.”


Why Strategic Planning Without CIOs Fail

For large IT projects exceeding $15 million in initial budget, the research found average cost overruns of 45%, value delivery 56% below predictions, and 17% of projects becoming black swan events with cost overruns exceeding 200%, sometimes threatening organizational survival. These outcomes are not random. BCG 2024 research surveying global C-suite executives across 25 industries found that organizations including technology leaders from the start of strategic initiatives achieve 154% higher success rates than those that do not. When CIOs enter after critical decisions are made, organizations discover mid-execution that constraints render promised features impossible, integration requirements multiply beyond projections, and vendor capabilities fail to match sales promises. Direct project costs pale beside the accumulated burden of technical debt. ... Gartner’s 2025 CIO Survey (released October 2024), which surveyed over 3,100 CIOs and technology executives, revealed that only 48% of digital initiatives meet or exceed their business outcome targets. However, Digital Vanguard CIOs, who co-own digital delivery with business leaders, achieve a 71% success rate. That 48% improvement represents the difference between coin-flip odds and a reliable strategic advantage. Failed transformations do not merely waste money. They consume organizational capacity that could deliver value elsewhere.


Top 3 Reasons Why Data Governance Strategies Fail

Clearly, data governance is policy, not a solution. It nests within any organization that has deployed business analytics as part of its overall strategy – in fact, one of the reasons for data governance failure is that it is not being aligned with an enterprise’s business strategy. Governance is about ensuring the proper implementation of business rules and controls around your organization’s data. It involves the wholehearted participation of all company departments, especially IT and business. Any attempt to run it in a vacuum or silo means it’s imminently doomed. ... A well-thought-out data governance plan must have a governing body and a defined set of procedures with a plan to execute them. To begin with, one has to identify the custodians of an enterprise’s data assets. Accountability is key here. The policy must determine who in the system is responsible for various aspects of the data, including quality, accessibility, and consistency. Then come to the processes. A set of standards and procedures must be defined and developed for how data is stored, backed up, and protected. To be left out, a good data governance plan must also include an audit process to ensure compliance with government regulations. ... If an Enterprise does not know where it’s headed with its data governance plan, reflected in black and white, it’s bound to stutter. Things like targets achieved, dollars saved, and risks mitigated need to be measured and recorded.

Daily Tech Digest - December 27, 2025


Quote for the day:

"Always remember, your focus determines your reality." -- George Lucas



Leading In The Age Of AI: Five Human Competencies Every Modern Leader Needs

Leaders are surrounded by data, metrics and algorithmic recommendations, but decision quality depends on interpretation rather than volume. Insight is the ability to turn information and diverse perspectives into clarity. It requires curiosity, patience and the humility to question assumptions. Leaders who demonstrate this capability articulate complex issues clearly, invite dissent before deciding and translate analysis into meaningful direction. ... Integration is the capability to design environments where human creativity and machine intelligence reinforce one another. Leaders strong in this capability align technology with purpose and culture, encourage experimentation and ensure that tools enhance human capability rather than replacing reflection and judgment. The aim is capability at scale, not efficiency at any cost. ... Inspiration is the ability to energize people by helping them see what is possible and how their work contributes to a larger purpose. It is grounded optimism rather than polished enthusiasm. Leaders who inspire use story, clarity and authenticity to create shared commitment rather than simple compliance. When purpose becomes personal, contribution follows. ... It is not only about speed or quarterly numbers. It is about sustainable value for people, organizations and society. Leaders strong in this capability balance performance with well-being and growth, adapt strategy based on real feedback and design systems that strengthen capacity over time instead of exhausting it.


Big shifts that will reshape work in 2026

We’re moving into a new chapter where real skills and what people can actually do matter more than degrees or job titles. In 2026, this shift will become the standard across organisations in APAC. Instead of just looking for certificates, employers are now keen to find people who can show adaptability, pick up new things quickly, and prove their expertise through action. ... as helpful as AI can be, there’s a catch. Technology can make things faster and smarter, but it’s not a substitute for the human touch—creativity, empathy, and making the right call when it matters. The real test for leaders will be making sure AI helps people do their best work, not strip away what makes us human. That means setting clear rules for how AI is used, helping employees build digital skills, and keeping trust at the centre of it all. Organisations that succeed will strike a balance: leveraging AI’s analytical power to unlock efficiencies, while empowering people to focus on the relational, imaginative, and moral dimensions of work. ... Employee wellbeing is set to become the foundation of the future of work. No longer a peripheral benefit or a box to check, wellbeing will be woven into organisational culture, shaping every aspect of the employee experience. ... Purpose is emerging as the new currency of talent attraction and retention, particularly for Gen Z and millennials, who are steadfast in their desire to work for organisations that reflect their personal values. 


How AI could close the education inequality gap - or widen it

On one side are those who say that AI tools will never be able to replace the teaching offered by humans. On the other side are those who insist that access to AI-powered tutoring is better than no access to tutoring at all. The one thing that can be agreed on across the board is that students can benefit from tutoring, and fair access remains a major challenge -- one that AI may be able to smooth over. "The best human tutors will remain ahead of AI for a long time yet to come, but do most people have access to tutors outside of class?" said Mollick. To evaluate educational tools, Mollick uses what he calls the "BAH" test, which measures whether a tool is better than the best available human a student can realistically access. ... AI tools that function like a tutor could also help students who don't have the resources to access a human tutor. A recent Brookings Institution report found that the largest barrier to scaling effective tutoring programs is cost, estimating a requirement $1,000 to $3,000 per student annually for high-impact models. Because private tutoring often requires financial investment, it can drive disparities in educational achievement. Aly Murray experienced those disparities firsthand. Raised by a single mother who immigrated to the US from Cuba, Murray grew up as a low-income student and later recognized how transformative access to a human tutor could have been. 


Shift-Left Strategies for Cloud-Native and Serverless Architectures

The whole architectural framework of shift-left security depends on moving critical security practices earlier in the development lifecycle. Incorporating security in the development lifecycle should not be an afterthought. Within this context, teams are empowered to identify and eliminate risks at design time, build time, and during CI/CD — not after. These modern workloads are highly dynamic and interconnected, and a single mishap can trickle down across the entire environment. ... Serverless Functions can introduce issues if they run with excessive privileges. This can be addressed by simply embedding permissions checks early in the development lifecycle. A baseline of minimum required identity and access management (IAM) privileges should be enforced to keep development tight. Wildcards or broad permissions should be leveraged in this context. Also, it makes sense to use runtime permission boundary generation — otherwise, functions can be compromised without appropriate safeguards. ... In modern-day cloud environments, it is crucial that observability is considered a major priority. Shifting left within the context of observability means logs, metrics, traces, and alerts are integrated directly into the application from day one. AWS CloudWatch or DataDog metrics can be integrated into the application code so that developers can keep an eye on the critical behaviors of the application. 


Agentic AI and Autonomous Agents: The Dawn of Smarter Machines

At their core, agentic AI and autonomous agents rely on a few powerhouse components: planning, reasoning, acting, and tool integration. Planning is the blueprint phase the AI breaks a goal into subtasks, like mapping out a road trip with stops for gas and sights. Reasoning kicks in next, where it evaluates options using logic, past data, or even ethical guidelines (more on that later). Acting is the execution: interfacing with the real world via APIs, databases, or even physical robots. And tool integration?  ... Diving deeper, it’s worth comparing agentic AI to other paradigms to see why it’s a game-changer. Standalone LLMs, like basic GPT models, are fantastic for generating text but falter on execution — they can’t “do” things without external help. Agentic systems bridge that by embedding action loops. Multi-agent setups take it further: Imagine a team of specialized agents collaborating, one for research, another for analysis, like a virtual task force. ... Looking ahead, the future of agentic AI feels electric yet cautious. By 2030, I predict multi-agent collaborations becoming standard, with advancements in human-in-the-loop designs to mitigate ethics pitfalls — like ensuring transparency in decision-making or preventing job displacement. OpenAI’s push for standardized frameworks addresses this, but we must grapple with questions: Who owns the data agents learn from? How do we audit autonomous actions? 


Operationalizing Data Strategy with OKRs: From Vision to Execution

For any business, some of the most critical data-driven initiatives and priorities include risk mitigation, revenue growth, and customer experience. To drive more effectiveness and accuracy in such business functions, finding ways to blend the technical output and performance data with tangible business outcomes is important. You must also proactively assess the shortcomings and errors in your data strategy to identify and correct any misaligned priorities. ... OKRs can empower data teams to leverage analytics and data sources to deliver highly actionable, timely insights. Set measurable and time-bound objectives to ensure focus and drive tangible progress toward your goals by leveraging an OKR platform, creating visually appealing dashboards, and assigning accountability to employees. ... If your high-level vision is “to become a data-driven organization,” the most effective way to work toward it is to break it into specific and measurable objectives. More importantly, consider segmenting your core strategy into multiple use cases, like operations optimization, customer analytics, and regulatory compliance. With these easily trackable segments, improve your focus and enable your teams to deliver incremental value. ... By tying OKRs with processes like governance and quality, you can ensure that they become measurable and visible priorities, causing fewer incidents and building confidence in analytics-based projects and processes.


This tiny chip could change the future of quantum computing

At the heart of the technology are microwave-frequency vibrations that oscillate billions of times per second. These vibrations allow the chip to manipulate laser light with remarkable precision. By directly controlling the phase of a laser beam, the device can generate new laser frequencies that are both stable and efficient. This level of control is a key requirement not only for quantum computing, but also for emerging fields such as quantum sensing and quantum networking. ... The new device generates laser frequency shifts through efficient phase modulation while using about 80 times less microwave power than many existing commercial modulators. Lower power consumption means less heat, which allows more channels to be packed closely together, even onto a single chip. Taken together, these advantages transform the chip into a scalable system capable of coordinating the precise interactions atoms need to perform quantum calculations. ... The researchers are now working on fully integrated photonic circuits that combine frequency generation, filtering, and pulse shaping on a single chip. This effort moves the field closer to a complete, operational quantum photonic platform. Next, the team plans to partner with quantum computing companies to test these chips inside advanced trapped-ion and trapped-neutral-atom quantum computers.


The 5-Step Framework to Ensure AI Actually Frees Your Time Instead of Creating More Work

Success with AI isn’t measured by the number of automations you have deployed. True AI leverage is measured by the number of high-value tasks that can be executed without oversight from the business owner. ... Map what matters most — It’s critical to focus your energy on where it matters the most. Look through your processes to identify bottlenecks and repetitive decisions or tasks that don’t need your input. ... Design roles before rules — Figure out where you need human ownership in your processes. These will be activities that require traits like empathy, creative thinking and high-level strategy. Once the roles are established, you can build automation that supports those roles. ... Document before you delegate — Both humans and machines need clear direction. Be sure to document any processes, procedures, and SOPs before delegating or automating them. ... Automate boring and elevate brilliant — Your primary goal with automation is to free up your time for creating, strategy and building relationships. Of course, the reality is that not everything should be automated. ... Measure output, not inputs — Too many entrepreneurs spend their time focused on what their team and AI agents are doing and not what they are achieving. Intentional automation requires placing your focus on outputs to ensure the processes you have in place are working effectively, or where they can be improved. 


The next big IT security battle is all about privileged access

As the space matures, privileged access workflows will increasingly depend on adaptive authentication policies that validate identity and device posture in real time. Vendors that offer flexible passwordless frameworks and integrations with existing IAM and PAM systems will see increased market traction. This will mark a shift in the promised end of passwords, eliminating one of the most exploited attack vectors in privilege abuse and account takeovers. ... Instead of relying solely on human auditors or predefined rules, IAM/PAM solutions will use generative AI to summarize risky session activities, detect lateral movement indicators, and suggest remediations in real time. AI-assisted security will make privileged access oversight continuous and contextual, helping enterprises detect insider threats and compromised accounts faster than ever before. This will also move the industry toward autonomous access governance. ... Compromised privileged credentials will remain the single most direct path to data loss, and a sharp rise in targeted breaches, ransomware campaigns, and supply-chain intrusions involving administrative accounts will elevate IAM/PAM to a board-level concern in 2026. Enterprises will accelerate investments in vendor privileged access tools to mitigate risk from contractors, managed service providers, and external support staff.


Mentorship and Diversity: Shaping the Next Generation of Cyber Experts

For those considering a career in cybersecurity, Voight's advice is both practical and inspiring: follow your passion and embrace the industry's constant evolution. Whether you're starting in security operations or exploring niche areas like architecture and engineering, the key is to stay curious and committed to learning. As artificial intelligence and automation reshape the field, Voight remains optimistic, assuring that human expertise will always be essential, encouraging aspiring professionals to dive into a field brimming with opportunity, innovation, and the chance to make a meaningful impact. ... Cybersecurity is fascinating and offers many paths of entry. You don't necessarily need a specific academic program to get involved. The biggest piece is having a passion for it. The more you love learning about this industry, the better it will be for you in the long run. It's something you do because you love it. ... Sometimes, it's the people and teams you work with that make the job exciting. You want to be doing something new and exciting, something you can embrace and contribute to. Keep an open mind to all the different paths. There isn't one direct path, and not everyone will become a Chief Information Security Officer (CISO). Being a CISO may not be the role everyone imagines it to be when considering the responsibilities involved.

Daily Tech Digest - December 26, 2025


Quote for the day:

“Rarely have I seen a situation where doing less than the other guy is a good strategy.” -- Jimmy Spithill



Is Your Enterprise Architecture Ready for AI?

The old model of building, deploying, and governing apps is being reshaped into a composable enterprise blueprint. By abstracting complexity through visual models and machine intelligence, businesses are creating systems that are faster to adapt yet demand stronger governance, interoperability, and security. What emerges is not just acceleration but transformation at the foundation. ... With AI copilots spitting out code at scale, the traditional software development life cycle faces an existential test. Developers may not fully understand every line of AI-generated code, making manual reviews insufficient. The solution: automate aggressively. ... This new era also demands AI observability in SDLC, tracking provenance, explainability, and liability. Provenance shows the chain of prompts and responses. Explainability clarifies decisions. Bias and drift monitoring ensure AI systems don’t quietly shift into harmful or unreliable patterns. Without these, enterprises risk blind trust in black-box code. ... The destination for enterprises is clear: AI-native enterprise architecture and composable enterprise blueprint strategies, where every capability is exposed as an API and orchestrated by LCNC and AI. The road, however, is slowed by legacy monoliths in industries like banking and healthcare. These systems won’t vanish overnight. Instead, strategies like wrapping monoliths with APIs and gradually replacing components will define the journey. 


After LLMs and agents, the next AI frontier: video language models

World models — which some refer to as video language models — are the new frontier in AI, following in the footsteps of the iconic ChatGPT and more recently, AI agents. Current AI tech largely affects digital outcomes, but world models will allow AI to improve physical outcomes. World models are designed to help robots understand the physical world around them, allowing them to track, identify and memorize objects. On top of that, just like humans planning their future, world models allow robots to determine what comes next — and plan their actions accordingly. ... Beyond robotics, world models simulate real-world scenarios. They could be used to improve safety features for autonomous cars or simulate a factory floor to train employees. World models pair human experiences with AI in the real world, said Deepak Seth, director analyst at Gartner. “This human experience and what we see around us, what’s going on around us, is part of that world model, which language models are currently lacking,” Seth said. ... World models are one of several tools that will be used to deploy robots in the real world, and they will continue to improve, said Kenny Siebert, AI research engineer at Standard Bots. But the models suffer from similar problems — the hallucinations and degradation — that affect the likes of ChatGPT and video-generators. Moving hallucinations into the physical world could cause harm, so researchers are trying to solve those kinds of issues.


Hub & Spoke: The Operating System for AI-Enabled Enterprise Architecture

Today most enterprises still run on heroics, emails, slide decks, and 200-person conference calls. Even when a good repository and healthy collaboration culture exist, nothing “sticks” without a mechanism that relentlessly harvests reality, unifies understanding, and broadcasts the right truth to the right person at the right moment. That mechanism is a new application of hub-and-spoke – not just for data integration, but for architecture governance itself. We call it simply Hub & Spoke. ... At the centre runs a continuous cycle of three actions: Harvest – Ingest everything that matters: scanner output, CI/CD metadata, application inventories, risk registers, process models, meeting outcomes, human feedback, and (increasingly) agentic AI crawls; Unify – Connect the dots. Establish relationships, resolve duplicates, detect patterns and anti-patterns, and maintain one coherent model of the enterprise; and Broadcast – Push the right view, in the right language, through the right channel, at the right time. A CIO sees strategic heatmaps; a developer receives contextual architecture guardrails inside the IDE; a regulator gets a compliance report on demand. ... To fully leverage the H.U.B. actions, we apply them to five fundamental capabilities that drive any organisation, encapsulated in S.P.O.K.E.: Stakeholders – who cares and who decides; Processes – sequences that deliver value; Outcome – the why (always placed in the centre of the model); Knowledge – codified artefacts (models, policies, decisions, blueprints); and Enterprise Assets – systems, data, infrastructure, contracts 


Orchestrating value: The new discipline of continuous digital transformation

The most important principle for any CIO today is deceptively simple: every transformation must begin with value and be engineered for agility. In a volatile and fast-moving environment, success depends not on how much technology you deploy, but on how effectively you align it to outcomes that matter. Every initiative should begin with clarity of purpose. What is the value hypothesis? What problem are we solving? Who owns the outcome, and when will impact be visible? ... Architecture then becomes the critical enabler. Agility must be built into the design, through modular platforms, adaptable processes, and feedback-driven operating models that allow business change, talent movement, and technological evolution to coexist seamlessly. Measurement turns agility from theory into discipline. Continuous value reviews, architectural checkpoints, and strategy resets ensure transformation remains evidence-led rather than aspirational. Every initiative must answer three questions: Why value? Why now? Why this architecture? In a world defined by velocity and volatility, transformation isn’t about doing more – it’s about doing what matters, faster, smarter, and with enduring value. ... Today’s CIOs also demand composable, interoperable platforms that integrate seamlessly into existing ecosystems, avoiding vendor lock-in while accelerating scale through APIs, microservices, and modular architectures. Partners must bring both agility and discipline – speed balanced with governance.


Why Integration Debt Threatens Enterprise AI and Modernization

AI agents rely on fast, trusted data exchanges across applications. However, point-to-point connectors often break under new query loads. Matt McLarty of MuleSoft states that integration challenges slow digital transformation. Integration Debt surfaces here as latent System Friction that derails AI pilots. Furthermore, developers spend 39% of their time writing custom glue code. Consequently, innovation budgets shrink while maintenance backlogs grow. Such opportunity cost defines Integration Debt in real dollars and morale. Disconnected integrations throttle AI benefits and drain talent. In contrast, scale introduces additional complexity exposed next. ... Effective governance establishes shared schemas, versioning, and certification for every API. Nevertheless, shadow IT and citizen developers complicate enforcement. Therefore, leading CIOs create integration review boards with quarterly scorecards. Accenture and Deloitte embed such controls in Modernization playbooks to prevent relapse. Additionally, companies publish portal dashboards that display live Integration Debt metrics to executives. ... The evidence is clear: disconnected architectures tax innovation, security, and profits. Ramsey Theory Group reminds leaders that random complexity often concentrates risk in surprising places. Similarly, unchecked System Friction erodes developer morale and board confidence. However, organizations that quantify debt, enforce governance, and adopt reusable APIs accelerate Modernization success. 


The Widening AI Value Gap: Strategic Imperatives for Business Leaders

AI value creation in business settings extends far beyond narrow efficiency gains or cost reductions. Contemporary frameworks increasingly distinguish between three fundamental pathways through which AI generates economic returns: deploying efficiency-enhancing tools, reshaping existing workflows, and inventing entirely new business models ... Reshaping represents a more ambitious approach, targeting core business workflows for end-to-end transformation. Rather than automating existing steps in isolation, reshaping asks: How would we design this workflow from scratch if AI capabilities were available from the outset? This might involve redesigning marketing campaign development to leverage AI-driven personalization at scale, restructuring supply chain management around predictive demand algorithms, or reimagining customer service through intelligent agent orchestration. ... Value measurement frameworks must capture both tangible and strategic dimensions. Tangible metrics include revenue increases (projected at 14.2% for future-built companies in areas where AI applies by 2028), cost reductions (9.6% for leaders), and measurable improvements in key performance indicators such as time-to-hire, customer satisfaction scores, and defect rates ... The strategic implications extend beyond near-term financial performance. Organizations trailing in AI maturity face deteriorating competitive positions as digital-native competitors and AI-advanced incumbents reshape industry economics.


4 mandates for CIOs to bridge the AI trust gap

As a CIO, you must recognize that low trust in public AI eventually seeps into the enterprise. If your customers or employees see AI being used unethically in media scenarios through misinformation and bias, or in personal scenarios like cybercrime, their skepticism will bleed into your enterprise-grade CRM or HR systems. The recommendation is to build on the existing trust in the workplace. Use the enterprise as a model for responsible deployment. Document and communicate your AI internal usage policies with exceptional clarity, and allow this transparency to be your market differentiator. Show your customers and partners the standards you hold your internal AI to, and then extrapolate those standards to your external products. ... For CIOs in highly regulated industries such as finance and healthcare, the mandate is to not just maintain but elevate the current level of rigor. The existing regulatory compliance is the baseline, not the ceiling, and the market will punish the first major breach or bias incident, undoing years of consumer confidence. ... We must stop telling end users AI is trustworthy and start showing them through tangible experience. Trust is a feature that must be designed from the start, not something patched in later. The first step is to involve the customer. Implement co-design programs where the end-users and customers, not just product managers, are involved in the design and testing phases of new AI applications. 


The Enterprise “Anti-Cloud” Thesis: Repatriation of AI Workloads to On-Premises Infrastructure

Today, a new inflection point has arrived: the dawn of artificial intelligence and large-scale model training. Running in parallel is an observable and rapidly growing trend in which companies are repatriating AI workloads from the public cloud to on-premises environments. This “anti-cloud” thesis represents a readjustment, rather than a backlash, mirroring other historical shifts in leadership in which prescience reordered entire industries. As Gartner has remarked, “By 2025, 60% of organizations will use sovereignty requirements as a primary factor in selecting cloud providers.” ... Navigating this transition requires fundamentally different abilities, integrating deep technical fluency with disciplined strategic thinking. AI infrastructure differs sharply from other traditional cloud workloads in that it is compute-intensive, highly resource-intensive, latency-sensitive, and tightly connected with data governance. ... The repatriation of AI workloads brings several challenges: lack of AI infrastructure talent, high upfront GPU procurement costs, operational overhead, security risks, and sustainability concerns. Leaders must manage hardware supply chain volatility, model reliability, and energy efficiency. Lacking disciplined governance, repatriation creates a high risk of cost overruns and fragmentation. The central challenge is to balance innovation with control, calling for transparency of plans and scenario modeling.


The Fragile Edge: Chaos Engineering For Reliable IoT

Chaos engineering is mostly used in cloud environments because it works very well there. However, it is more difficult to apply to IoT and edge computing systems. IoT devices are physical, often located in remote places and sometimes perform critical tasks. This makes managing them even more challenging. Restarting cloud servers using scripts is usually simple. But rebooting medical devices like pacemakers, industrial robots or warehouse sensors is much more complex and can be dangerous. Resetting edge devices also takes longer because system failures often have immediate physical outcomes. Chaos engineering in IoT systems has both benefits and challenges. Engineers need to design methods to test failures safely without harming devices. The testing process aims to detect equipment breakdowns while developing systems that function during actual operational conditions. The proven cloud software methods of chaos engineering enable organisations to meet the requirements of edge devices. ... The implementation of chaos engineering for IoT systems requires both strategic planning and innovative solutions. Engineers should perform system vulnerability tests, which ensure operational safety and reliability for real world deployment. The risk assessment process needs tested and accurate methods to protect both system devices and their users from harm. ... Organisations need to maintain ethical standards when they use chaos engineering to safeguard their IoT systems. Engineers who want to perform IoT chaos testing need to follow established safety protocols.


Can Agentic AI operate independently within secure parameters

Context-aware security, enabled by Agentic AI, is essential for effective NHI management. This approach goes beyond traditional methods by understanding the context within which NHIs operate. It evaluates the ownership, permissions, and usage patterns, offering invaluable insights into potential vulnerabilities. By employing context-aware security, organizations can surpass the limitations of point solutions, such as secret scanners, which provide only surface-level protection. ... With the proliferation of digital identities, organizations must adopt a comprehensive approach that incorporates both technological advancements and strategic oversight. Agentic AI, with its ability to operate independently, aligns perfectly with this need, offering a robust framework that supports the secure management of machine identities across various industries. Given the increasing complexities of digital, organizations must continuously evolve their cybersecurity strategies. ... For enterprises navigating complex regulatory environments, predictive insights from AI models can forecast potential compliance issues, allowing preemptive action. When regulations evolve, this foresight is invaluable in maintaining adherence without resource-intensive overhauls of existing processes. ... Investing in AI-driven strategies ensures that organizations can withstand disruptions, safeguarding both operational functions and reputation. 

Daily Tech Digest - December 25, 2025


Quote for the day:

"When I dare to be powerful - to use my strength in the service of my vision, then it becomes less and less important whether I am afraid." -- Audre Lorde



Declaring Quantum Christmas Advantage: How Quantum Computing Could Optimize The Holidays

If logistics is about moving stuff, gaming is about moving minds. And quantum computing’s influence here is more playful, at least for now. At the intersection of quantum and gaming, researchers are experimenting with quantum-inspired procedural content generation. Essentially, this is using hybrid quantum-classical approaches to generate game worlds, rules and narratives that are bigger and more complex than traditional methods allow. ... The holiday shopping season — part retail frenzy, part seasonal ritual and part absolute bottom-line need for business survival — is another area where quantum computing’s optimization chops could shine in a future-looking Christmas playbook. Retailers are beginning to explore how quantum optimization could help with workforce scheduling, inventory planning, dynamic pricing, and promotion planning, all classic holiday headaches for brick-and-mortar and online merchants alike, according to a D-Wave report. ... Finally, an esoteric — but perhaps way more festive — application of quantum tech would be using it for holiday analytics and personalization. Imagine real-time gift-recommendation engines that use quantum-accelerated models to process massive datasets instantly, teasing out patterns and preferences that help retailers suggest the perfect present for even the hardest-to-buy-for relative. 


How Today’s Attackers Exploit the Growing Application Security Gap

Zero-day vulnerabilities in applications are quite common these days, even in well-supported and mature technologies. But most zero-days aren’t that fancy. Attackers regularly exploit some common errors developers make. A good resource to learn from about this is the OWASP Top 10, which was recently updated to cover the latest application security gaps. The main issue on the list is broken access controls, which happens when the application doesn’t properly enforce who can access what. In reality, this translates into bad actors being able to view or manipulate data and functionality they shouldn’t have access to. Next on the list are security misconfigurations. These are simple to tune, but given the vast number of environments, services, and cloud platforms most applications span, they are difficult to maintain at scale. A common example are exposed admin interfaces, which opens the door to credential-related attacks, particularly brute-forcing. Software supply chain failures add another layer of risk. Modern applications rely heavily on open-source libraries, APIs, packages, container images, and CI/CD components. Any of these can introduce vulnerabilities or malicious code into production. A single compromised dependency can impact thousands of downstream applications. For application developers and enthusiasts, it is highly recommended to study the entries in the OWASP Top 10, along with related OWASP lists such as the API Security Top 10 and emerging AI security guidance.


Data governance key to AI security

Cybersecurity was once built to respond. Today, the response alone is no longer enough. We believe security must be predictive, adaptive, and intelligent. This belief led to the creation of the Digital Vaccine, an evolution of Managed Security Services (MSSP) designed for an AI-first, quantum-ready world. "Much like a biological vaccine, Digital Vaccine continuously identifies new and unknown attack patterns, learns from every attempted breach, and builds defence mechanisms before damage occurs," he explained. The urgency is real, according to the experts, because post-quantum risks will soon render many of today's encryption methods ineffective, exposing sensitive data that was once considered secure. At the same time, AI-powered cyber threats are becoming autonomous, faster, and more targeted-operating at machine speed and scale. ... Almost every AI is built on data. "It is transforming data into knowledge. Once it is learned, we cannot remove it. So what is being fed into the data and LLModels? No governance policies exist as of today," pointed out Krishnadas. Cybersecurity was once built to respond. Today, the response alone is no longer enough. We believe security must be predictive, adaptive, and intelligent. This belief led to the creation of the Digital Vaccine, an evolution of Managed Security Services (MSSP) designed for an AI-first, quantum-ready world.


How the AI era is driving the resurgence in disaggregated storage

As AI workloads surge and accelerated computing takes the center stage, data center architectures and storage systems must keep pace with the increasing demand for memory and compute. Yet, the fast and ever-evolving high-performance computing (HPC) and AI systems have different requirements for the various IT infrastructure hardware components. While they require Central Processing Unit (CPU) and Graphic Processing Unit (GPU) nodes to be refreshed every couple of years to keep up with the AI workload demands, storage solutions like high-capacity HDDs come with longer warranties (up to five years), are therefore built to last several years longer, and don’t need to be refreshed as often. Based on this, more and more organizations are moving storage out of the server and embracing disaggregated infrastructures to avoid wasting resources. ... In the AI era and ZB age, IT leaders need more from their storage systems. They are looking for scalable, low-risk solutions that can evolve with them, delivering an optimized cost per Terabyte ($/TB), better energy-efficiency per TB (kW/TB), improved storage density, high-quality, and trust to perform at scale. Disaggregated storage can be a solution that offers precisely this flexibility of demand-driven scaling to meet the individual requirements of data center workloads and business needs. ... With disaggregated storage, enterprises can embrace AI and HPC while no longer being tethered to HCI architectures. 


OpenAI admits prompt injection is here to stay as enterprises lag on defenses

OpenAI, the company deploying one of the most widely used AI agents, confirmed publicly that agent mode “expands the security threat surface” and that even sophisticated defenses can’t offer deterministic guarantees. For enterprises already running AI in production, this isn’t a revelation. It’s validation — and a signal that the gap between how AI is deployed and how it’s defended is no longer theoretical. None of this surprises anyone running AI in production. What concerns security leaders is the gap between this reality and enterprise readiness. ... OpenAI pushed significant responsibility back to enterprises and the users they support. It’s a long-standing pattern that security teams should recognize from cloud shared responsibility models. The company recommends explicitly using logged-out mode when the agent doesn't need access to authenticated sites. It advises carefully reviewing confirmation requests before the agent takes consequential actions like sending emails or completing purchases. And it warns against broad instructions. "Avoid overly broad prompts like 'review my emails and take whatever action is needed,'" OpenAI wrote. "Wide latitude makes it easier for hidden or malicious content to influence the agent, even when safeguards are in place." The implications are clear regarding agentic autonomy and its potential threats. The more independence you give an AI agent, the more attack surface you create. 


The 3-Phase Framework for Turning a Cyberattack Into a Strategic Advantage

Typically, a lot of companies will panic and then look for a scapegoat when faced with a crisis. Maersk opted to realize that the root cause of the problem was not just a virus. Leaders accepted that they were bang average in terms of how they handled cybersecurity. The company also accepted that what happened may have been due to a cultural problem internally that needed to be fixed. While malware was a cause of issues, they also understood that their culture played a part, as security was seen as something that IT dealt with and not a core business thing. ... Maersk succeeded in strengthening customer trust and communication as it turned what could have been a defeat into a competitive advantage. Rather than trying to sugarcoat, they were very transparent and quickly informed customers of what was happening in the journey to recovery. Instead of telling customers, “we failed you,” they opted for a stance of “we are being tested, and we are in this together.” ... After a data disaster, your aim should not just be to recover, but you must also aim to build an “antifragile” organization that can come out stronger after a major challenge. An important step is to ensure that you fully internalize the lessons. When Maersk had to act, it did not just fix the problem. Instead, it embedded a new security system into its future planning. Accountability was added to all teams. Resilience should not just be something you aim for or use in a one-time project. 


Leadership And The Simple Magic Of Getting Lost

There’s a part of the brain called the hippocampus that’s deeply tied to memory and spatial reasoning. It’s what helps us build internal maps of the world. It helps us recognize patterns, landmarks, distance and direction. It lights up when we have to figure things out for ourselves. When we follow turn-by-turn directions all the time, something subtle shifts. We’re not really navigating anymore. We’re just ... complying. It's efficient, yes. But also quieter, mentally. There’s growing concern among neuroscientists that when we outsource too much of this kind of thinking, we may be weakening one of the core systems tied to memory and long-term brain health. The research is still unfolding. Nothing is fully settled. But there’s enough there that it’s worth paying attention. Because the brain, like the body, works on a simple principle: Use it or lose it. ... This is why, every once in a while, I’ll let myself get a little lost on purpose. Not dangerously. Not recklessly. Just less optimized. I’ll take a different road. Walk through a neighborhood I don’t know. Let the uncertainty stretch a little. Let my brain build the map instead of borrowing one. This is the same skill we build in children when we’re teaching them how to find their way, but inside companies, it shows up as orientation. When you’re facing something unfamiliar—a new market, a hard strategic turn, a problem no one has quite named yet—your job isn’t to hand your team a route. It’s to give them landmarks: Here’s what we know. Here’s what can’t change.


Gen AI Paradox: Turning Legacy Code Into an Asset

Legacy modernization for decades was unglamorous and often postponed until the pain of technical debt surpassed the risks of migration. There is $2.41 trillion in technical debt in the United States alone. Seventy percent of workloads still run on-premises, and 70% of legacy IT software for Fortune 500 companies was developed over 20 years ago. ... It's not just about wishful thinking but is also driven by internal organizational dynamics. When we launched AWS Transform, after processing over a billion lines of code, we estimated it saved customers about 800,000 hours of manual work. But for a CIO, the true measure often relates to capacity. We observe organizations saving up to 80% in manual effort. This doesn't only mean cost reductions, but also avoiding the need to increase headcount for maintenance. For instance, I spoke with a technology leader managing a smaller team of about 200 people. His dilemma was: "Do I invest in building new functions, or do I maintain and modernize?" He told his team he wouldn't add a single person for modernization. They have to use tools to accomplish it. Using these tools, he completed a .NET transformation of 800,000 lines of code in two weeks, a project he estimated would typically take six months. The justification for the CIO is simple: save time and redirect 20% to 30% of the budget previously spent on tech debt toward innovation.


5 stages to observability maturity

The first requirement is coherence. Companies must move away from fragmented tooling and build unified telemetry pipelines capable of capturing logs, metrics, traces, and model signals in a consistent way. For many, this means embracing open standards such as OpenTelemetry and consolidating data sources so AI systems have a complete picture of the environment. ... The second requirement is business alignment. Enterprises that successfully evolve from monitoring to observability, and from observability to autonomous operations, do so because they learn to articulate the relationship between technical signals and business outcomes. Leaders want to understand not just the number of errors thrown by a microservice, but customers affected, the revenue at stake, or the SLA exposure if the issue persists. ... A third element is AI governance. As Nigam says, AI models change character over time, so observability must extend into the AI layer, providing real-time visibility into model behavior and early signs of instability. Companies that rely more heavily on AI must also accept a new operational responsibility to ensure the AI itself remains reliable, auditable, and secure. Finally, organizations must learn to construct guardrails for automation. Casanova and Woodside both say the shift to autonomous operations isn’t an overnight leap but a progressive widening of the boundary between what humans review and what machines handle automatically. 


In the race to be AI-first, discipline matters more than speed

In an environment defined by uncertainty, economic volatility, cyber threats, supply-chain shocks, Srivastava believes resilience must be architected deliberately into the IT ecosystem. “We create an ecosystem that is so frugal that even if there are funding cuts or crisis situations, operations continue to run,” he explains. The objective is simple and uncompromising, the business must not stop. Digital initiatives may slow down, but the organisation itself should remain operational, regardless of external disruption. This focus on frugality is not about austerity. It is about discipline. “Resilience is not built when times are good,” Srivastava says. “It’s built when you assume disruption is inevitable.” ... Despite the complexity of modern IT stacks, Srivastava is unequivocal about where the real difficulty lies. “Technology is the easiest piece to crack,” he says. “Digital transformation is one of the most abused terms in the industry. Digital is easy. Transformation is hard.” Enterprises, he notes, are usually successful at acquiring tools, platforms, and licenses. “Everything that money can buy…tools, people, licenses…falls into place,” he says. What money cannot buy, however, is where transformation often breaks down to mindset shifts, adoption, ownership, and behavioural change. This challenge is particularly acute in manufacturing. 

Daily Tech Digest - December 24, 2025


Quote for the day:

"The only person you are destined to become is the person you decide to be." -- Ralph Waldo Emerson



When is an AI agent not really an agent?

If you believe today’s marketing, everything is an “AI agent.” A basic workflow worker? An agent. A single large language model (LLM) behind a thin UI wrapper? An agent. A smarter chatbot with a few tools integrated? Definitely an agent. The issue isn’t that these systems are useless. Many are valuable. The problem is that calling almost anything an agent blurs an important architectural and risk distinction. ... If a vendor knows its system is mainly a deterministic workflow plus LLM calls but markets it as an autonomous, goal-seeking agent, buyers are misled not just about branding but also about the system’s actual behavior and risk. That type of misrepresentation creates very real consequences. Executives may assume they are buying capabilities that can operate with minimal human oversight when, in reality, they are procuring brittle systems that will require substantial supervision and rework. Boards may approve investments on the belief that they are leaping ahead in AI maturity, when they are really just building another layer of technical and operational debt. Risk, compliance, and security teams may under-specify controls because they misunderstand what the system can and cannot do. ... demand evidence instead of demos. Polished demos are easy to fake, but architecture diagrams, evaluation methods, failure modes, and documented limitations are harder to counterfeit. If a vendor can’t clearly explain how their agents reason, plan, act, and recover, that should raise suspicion. 


Five identity-driven shifts reshaping enterprise security in 2026

Organizations that continue to treat identity as a static access problem will fall behind attackers who exploit AI-powered automation, credential abuse, and identity sprawl. The enterprises that succeed will be those that re-architect identity security as a continuous, data-aware control plane, one built to govern humans, machines, and AI with the same rigor, visibility, and accountability. ... Unlike traditional shadow IT, shadow AI is both more powerful and more dangerous. Employees can deploy advanced models trained on sensitive company data, and these tools often store or transmit privileged credentials, API keys, and service tokens without oversight. Even sanctioned AI tools become risky when improperly configured or connected to internal workflows. ... With AI-driven automation, sophisticated playbooks previously reserved for top-tier nation-states become accessible to countries, and non-state actors, with far fewer resources. This levels the playing field and expands the number of threat actors capable of meaningful, identity-focused cyber aggression. In 2026, expect more geopolitical disruptions driven by identity warfare, synthetic information, and AI-enabled critical infrastructure targeting. ... Machine identities have become the primary source of privilege misuse, and their growth shows no sign of slowing. As AI-driven automation accelerates and IoT ecosystems proliferate, organizations will hit a governance tipping point.2026 will force security teams to confront a tough reality. Identity-first security can’t stop with humans. 


Implementing NIS2 — without getting bogged down in red tape

NIS2 essentially requires three things: concrete security measures; processes and guidelines for managing these measures; and robust evidence that they work in practice. ... Therefore, two levels are crucial for NIS2: the technical measures and the evidence that they are effective. This is precisely where the transformation of recent years becomes apparent. Previously, concepts, measures, and specifications for software and IT infrastructures were predominantly documented in text form. ... The second area that NIS2 and the new Implementing Regulation 2024/2690 for digital services are enshrining in law is vulnerability management in the company’s own code and supply chain. This requires regular vulnerability scans, procedures for assessment and prioritization, timely remediation of critical vulnerabilities, and regulated vulnerability handling and — where necessary — coordinated vulnerability disclosure. Cloud and SaaS providers also face additional supply chain obligations ... The third area where NIS2 quickly becomes a paper tiger is the combination of monitoring, incident response, and the new reporting requirements. The directive sets clear deadlines: early warning within 24 hours, a structured report after 72 hours, and a final report no later than one month. ... NIS2 forces companies to explicitly define their security measures, processes, and documentation. This is inconvenient — ​​especially for organizations that have previously operated largely on an ad-hoc basis. 


Rethinking Anomaly Detection for Resilient Enterprise IT

Being armed with this knowledge is only the first step, though. The next challenge is detecting anomalies consistently and accurately in complex environments. This task is becoming increasingly difficult as IT environments undergo continuous digital transformation, shift towards hybrid-cloud setups, and rely on legacy systems that are well past their prime. These challenges introduce dynamic data, pushing IT leaders to rethink their anomaly detection processes. ... By incorporating seasonal patterns, user behavior, and workload types, adaptive baselines filter out the noise and highlight genuine deviations. Another factor to integrate is the overall context of a situation. Metrics rarely operate in isolation. During planned deployment, it would be anticipated for a spike in network latency. This same spike would be seen completely differently if it were to occur during steady operations. By combining telemetry with contextual signals, anomaly detection systems can separate the expected from the unexpected. ... Anomaly detection is meant to strengthen operations and improve overall resilience. However, it is not capable of delivering on this promise when teams are constantly swimming through the seas of generated alerts. By contextually and comprehensively adopting new approaches to the variety of anomalies, systems can identify root causes, uniformly correct systemic failures created from multiple metrics points, and mitigate the risk of outages.


Bridging the Gap: Engineering Resilience in Hybrid Environments (DR, Failover, and Chaos)

Resilience in a hybrid environment isn't just about preventing failure; it’s about enduring it. It requires moving beyond hope as a strategy and embracing a tripartite approach: Robust Disaster Recovery (DR), automated Failover, and proactive Chaos Engineering. ... Disaster Recovery is your insurance policy for catastrophic events. It is the process of regaining access to data and infrastructure after a significant outage—a hurricane hitting your primary data center, a massive ransomware attack, or a prolonged regional cloud failure. ... While DR handles catastrophes, Failover handles the everyday hiccups. Failover is the (ideally automatic) process of switching to a redundant or standby system upon the failure of the primary system, mostly automatic. Failover mechanisms in a hybrid environment ensure immediate operational continuity by automatically switching workloads from a failed primary system (on-premises or cloud) to a redundant secondary system with minimal downtime. This requires coordinating recovery across cloud and on-premises platforms. ... Chaos engineering is a proactive discipline used to stress-test systems by intentionally introducing controlled failures to identify weaknesses and build resilience. In hybrid environments—which combine on-premises infrastructure with cloud resources—this practice is essential for navigating the added complexity and ensuring continuous reliability across diverse platforms.


Should CIOs rethink the IT roadmap?

As technology consultancy West Monroe states: “You don’t need bigger plans — you need faster moves.” This is a fitting mantra for IT roadmap development today. CIOs should ask themselves where the most likely business and technology plan disrupters are going to come from. ... Understandably, CIOs can only develop future-facing technology roadmaps with what they see at a present point in time. However, they do have the ability to improve the quality of their roadmaps by reviewing and revising these plans more often. ... CIOs should revisit IT roadmaps quarterly at a minimum. If roadmaps must be altered, CIOs should communicate to their CEOs, boards, and C-level peers what’s happening and why. In this way, no one will be surprised when adjustments must be made. As CIOs get more engaged with lines of business, they can also show how technology changes are going to affect company operations and finances before these changes happen ... Equally important is emphasizing that a seismic change in technology roadmap direction could impact budgets. For instance, if AI-driven security threats begin to impact company AI and general systems, IT will need AI-ready tools and skills to defend and to mitigate these threats. ... Now is the time for CIOs to transform the IT roadmap into a more malleable and responsive document that can accommodate the disruptive changes in business and technology that companies are likely to experience.


Why shadow IT is a growing security concern for data centre teams

It is essential to recognise that employees use shadow IT to get their work done efficiently, not to deliberately create security risks. This should be front of mind for any IT teams and data centre consultants involved in infrastructure design and security provision. Finding blame or taking an approach that blocks everything does not work. A more effective way to address shadow IT use is to invest for the long term in a culture which promotes IT as a partner to workplace productivity, not something which is a hindrance. Ideally, this demands buy-in from senior management. Although it falls to IT teams to provide people with the tools for their jobs, providing choice, listening to employees’ requests and offering prompt solutions, will encourage the transparency so much needed for IT to analyse usage patterns, identify potential issues and address minor issues before they grow into costly problems. Importantly, this goes a long way towards embracing new technologies and avoiding employees turning to shadow IT that they find and use without approval. ... While IT teams are focused on gaining visibility and control over the software, hardware and services gainfully used by their organisations, they also need to be careful not to stifle innovation. It is here that data centre operators can share ideas on ways to best achieve this balance, as there is never going to be one model that suits every business. 


From Digitalization to Intelligence: How AI Is Redefining Enterprise Workflows

In the AI economy, digitalization plays another important role—turning paper documents into data suitable for LLM engines. This will become increasingly important as more sites restrict crawlers or require licensing, which reduces the usable pool of data. A 2024 report from the nonprofit watchdog Epoch AI projected that large language models (LLMs) could run out of fresh, human-generated training data as soon as 2026. Companies that rely purely on publicly available crawl data for continuous scaling likely will encounter diminishing returns. To avoid the looming publicly accessed data shortage, enterprises will need to use their digitized documents and corporate data to fine‐tune models for domain specific tasks rather than rely only on generic web data. Intelligent capture technologies can now recognize document types, extract key entities, and validate information automatically. Once digitized, this data flows directly into enterprise systems where AI models can uncover insights or predict outcomes. ... Automation isn’t just about doing more with less; it’s about learning from every action. Each scan, transaction, or decision strengthens the feedback loop that powers enterprise AI systems. The organizations recognizing this shift early will outpace competitors that still treat data capture as a back-office function. The winners will be those that turn the last mile of digitalization into the first mile of intelligence.


Boardrooms demand tougher AI returns & stronger data

Budget scrutiny is increasing as wider economic conditions remain uncertain and as organisations review early generative AI experiments. "AI investment is no longer about FOMO. Boards and CFOs want answers about what's working, where it's paying off, and why it matters now. 2026 will be a year of focus. Flashy experiments and perpetual pilots will lose funding. Projects that deliver measurable outcomes will move to the center of the roadmap," said McKee, CEO, Ataccama. ... "For years people have predicted that AI will hollow out data teams, yet the closer you get to real deployments, the harder that story is to believe. Once agents take over the repetitive work of querying, cleaning, documenting, and validating data, the cost of generating an insight will begin falling toward zero. And when the cost of something useful drops, demand rises. We've seen this pattern with steam engines, banking, spreadsheets, and cloud compute, and data will follow the same curve," said Keyser. Keyser said easier access to data and analysis is likely to change behaviours in business units that have not traditionally engaged with central data groups. He expects a rise in AI-literate staff across operational functions and a larger need for oversight. ... The organizations that adopt agents will discover something counterintuitive. They won't end up with fewer data workers, but more. This is Jevons paradox applied to analytics. When insight becomes easier, curiosity will expand and decision-making will accelerate.


The Blind Spots Created by Shadow AI Are Bigger Than You Think

If you think it’s the same as the old “shadow IT” problem with different branding, you’re wrong. Shadow AI is faster, harder to detect, and far more entangled with your intellectual property and data flows than any consumer SaaS tool ever was. ... Shadow AI is not malicious in nature; in fact, the intent is almost always to improve productivity or convenience. Unfortunately, the impact is a major increase in unplanned data exposure, untracked model interactions, and blind spots across your attack surface. ... Most AI tools don’t clearly explain how long they keep your data. Some retrain on what you enter, others store prompts forever for debugging, and a few had almost no limits at all. That means your sensitive info could be copied, stored, reused for training, or even show up later to people it shouldn’t. Ask Samsung, whose internal code found its way into a public model’s responses after an engineer uploaded it. They banned AI instantly. Hardly the most strategic solution, and definitely not the last time you’ll see this happen. ... Shadow AI bypasses Identity controls, DLP controls, SASE boundaries, Cloud logging, and Sanctioned inference gateways. All that “AI data exhaust” ends up scattered across a slew of unsanctioned tools and locations. Your exposure assessments are, by default, incomplete because you can’t protect what you can’t see. ... Shadow AI has changed from an occasional or unusual instance case to everyday behavior happening across all departments.