Showing posts with label infrastructure. Show all posts
Showing posts with label infrastructure. Show all posts

Daily Tech Digest - September 13, 2025


Quote for the day:

"Small daily improvements over time lead to stunning results." -- Robin Sharma


When it comes to AI, bigger isn’t always better

Developers were already warming to small language models, but most of the discussion has focused on technical or security advantages. In reality, for many enterprise use cases, smaller, domain-specific models often deliver faster, more relevant results than general-purpose LLMs. Why? Because most business problems are narrow by nature. You don’t need a model that has read TS Eliot or that can plan your next holiday. You need a model that understands your lead times, logistics constraints, and supplier risk. ... Just like in e-commerce or IT architecture, organizations are increasingly finding success with best-of-breed strategies, using the right tool for the right job and connecting them through orchestrated workflows. I contend that AI follows a similar path, moving from proof-of-concept to practical value by embracing this modular, integrated approach. Plus, SLMs aren’t just cheaper than larger models, they can also outperform them. ... The strongest case for the future of generative AI? Focused small language models, continuously enriched by a living knowledge graph. Yes, SLMs are still early-stage. The tools are immature, infrastructure is catching up, and they don’t yet offer the plug-and-play simplicity of something like an OpenAI API. But momentum is building, particularly in regulated sectors like law enforcement where vendors with deep domain expertise are already driving meaningful automation with SLMs.


Building Sovereign Data‑Centre Infrastructure in India

Beyond regulatory drivers, domestic data centre capacity delivers critical performance and compliance advantages. Locating infrastructure closer to users through edge or regional facilities has evidently delivered substantial performance gains, with studies demonstrating latency reductions of more than 80 percent compared to centralised cloud models. This proximity directly translates into higher service quality, enabling faster digital payments, smoother video streaming, and more reliable enterprise cloud applications. Local hosting also strengthens resilience and simplifies compliance by reducing dependence on centralised infrastructure and obligations, such as rapid incident reporting under Section 70B of the Information Technology (Amendment) Act, 2008, that are easier to fulfil when infrastructure is located within the country. ... India’s data centre expansion is constrained by key challenges in permitting, power availability, water and cooling, equipment procurement, and skilled labour. Each of these bottlenecks has policy levers that can reduce risk, lower costs, and accelerate delivery. ... AI-heavy workloads are driving rack power densities to nearly three times those of traditional applications, sharply increasing cooling demand. This growth coincides with acute groundwater stress in many Indian cities, where freshwater use for industrial cooling is already constrained. 


How AI is helping one lawyer get kids out of jail faster

Anderson said his use of AI saves up to 94% of evidence review time for his juvenile clients age 12-18. Anderson can now prepare for a bail hearing in half an hour versus days. The time saved by using AI also results in thousands of dollars in time saved. While the tools for AI-based video analysis are many, Anderson uses Rev, a legal-tech AI tool that transcribes and indexes video evidence to quickly turn overwhelming footage into accurate, searchable information. ... “The biggest ROI is in critical, time-sensitive situations, like a bail hearing. If a DA sends me three hours of video right after my client is arrested, I can upload it to Rev and be ready to make a bail argument in half an hour. This could be the difference between my client being held in custody for a week versus getting them out that very day. The time I save allows me to focus on what I need to do to win a case, like coming up with a persuasive argument or doing research.” ... “We are absolutely at an inflection point. I believe AI is leveling the playing field for solo and small practices. In the past, all of the time-consuming tasks of preparing for trial, like transcribing and editing video, were done manually. Rev has made it so easy to do on the fly, by myself, that I don’t have to anticipate where an officer will stray in their testimony. I can just react in real time. This technology empowers a small practice to have the same capabilities as a large one, allowing me to focus on the work that matters most.”


AI-powered Pentesting Tool ‘Villager’ Combines Kali Linux Tools with DeepSeek AI for Automated Attacks

The emergence of Villager represents a significant shift in the cybersecurity landscape, with researchers warning it could follow the malicious use of Cobalt Strike, transforming from a legitimate red-team tool into a weapon of choice for malicious threat actors. Unlike traditional penetration testing frameworks that rely on scripted playbooks, Villager utilizes natural language processing to convert plain text commands into dynamic, AI-driven attack sequences. Villager operates as a Model Context Protocol (MCP) client, implementing a sophisticated distributed architecture that includes multiple service components designed for maximum automation and minimal detection. ... This tool’s most alarming feature is its ability to evade forensic detection. Containers are configured with a 24-hour self-destruct mechanism that automatically wipes activity logs and evidence, while randomized SSH ports make detection and forensic analysis significantly more challenging. This transient nature of attack containers, combined with AI-driven orchestration, creates substantial obstacles for incident response teams attempting to track malicious activity. ... Villager’s task-based command and control architecture enables complex, multi-stage attacks through its FastAPI interface operating on port 37695.


Cloud DLP Playbook: Stopping Data Leaks Before They Happen

To get started on a cloud DLP strategy, organizations must answer two key questions: Which users should be included in the scope?; and Which communication channels should the DLP system cover Addressing these questions can help organizations create a well-defined and actionable cloud DLP strategy that aligns with their broader security and compliance objectives. ... Unlike business users, engineers and administrators require elevated access and permissions to perform their jobs effectively. While they might operate under some of the same technical restrictions, they often have additional capabilities to exfiltrate files. ... While DLP tools serve as the critical last line of defense against active data exfiltration attempts, organizations should not rely only on these tools to prevent data breaches. Reducing the amount of sensitive data circulating within the network can significantly lower risks. ... Network DLP inspects traffic originating from laptops and servers, regardless of whether it comes from browsers, tools, applications, or command-line operations. It also monitors traffic from PaaS components and VMs, making it a versatile system for cloud environments. While network DLP requires all traffic to pass through a network component, such as a proxy, it is indispensable for monitoring data transfers originating from VMs and PaaS services.


Weighing the true cost of transformation

“Most costs aren’t IT costs, because digital transformation isn’t an IT project,” he says. “There’s the cost of cultural change in the people who will have to adopt the new technologies, and that’s where the greatest corporate effort is required.” Dimitri also highlights the learning curve costs. Initially, most people are naturally reluctant to change and inefficient with new technology. ... “Cultural transformation is the most significant and costly part of digital transformation because it’s essential to bring the entire company on board,” Dimitri says. ... Without a structured approach to change, even the best technological tools fail as resistance manifests itself in subtle delays, passive defaults, or a silent return to old processes. Change, therefore, must be guided, communicated, and cultivated. Skipping this step is one of the costliest mistakes a company can make in terms of unrealized value. Organizations must also cultivate a mindset that embraces experimentation, tolerates failure, and values ​​continuous learning. This has its own associated costs and often requires unlearning entrenched habits and stepping out of comfort zones. There are other implicit costs to consider, too, like the stress of learning a new system and the impact on staff morale. If not managed with empathy, digital transformation can lead to burnout and confusion, so ongoing support through a hyper-assistance phase is needed, especially during the first weeks following a major implementation.


5 Costly Customer Data Mistakes Businesses Will Make In 2025

As AI continues to reshape the business technology landscape, one thing remains unchanged: Customer data is the fuel that fires business engines in the drive for value and growth. Thanks to a new generation of automation and tools, it holds the key to personalization, super-charged customer experience, and next-level efficiency gains. ... In fact, low-quality customer data can actively degrade the performance of AI by causing “data cascades” where seemingly small errors are replicated over and over, leading to large errors further along the pipeline. That isn't the only problem. Storing and processing huge amounts of data—particularly sensitive customer data—is expensive, time-consuming and confers what can be onerous regulatory obligations. ... Synthetic customer data lets businesses test pricing strategies, marketing spend, and product features, as well as virtual behaviors like shopping cart abandonment, and real-world behaviors like footfall traffic around stores. Synthetic customer data is far less expensive to generate and not subject to any of the regulatory and privacy burdens that come with actual customer data. ... Most businesses are only scratching the surface of the value their customer data holds. For example, Nvidia reports that 90 percent of enterprise customer data can’t be tapped for value. Usually, this is because it’s unstructured, with mountains of data gathered from call recordings, video footage, social media posts, and many other sources.


Vibe coding is dead: Agentic swarm coding is the new enterprise moat

“Even Karpathy’s vibe coding term is legacy now. It’s outdated,” Val Bercovici, chief AI officer of WEKA, told me in a recent conversation. “It’s been superseded by this concept of agentic swarm coding, where multiple agents in coordination are delivering… very functional MVPs and version one apps.” And this comes from Bercovici, who carries some weight: He’s a long-time infrastructure veteran who served as a CTO at NetApp and was a founding board member of the Cloud Native Compute Foundation (CNCF), which stewards Kubernetes. The idea of swarms isn't entirely new — OpenAI's own agent SDK was originally called Swarm when it was first released as an experimental framework last year. But the capability of these swarms reached an inflection point this summer. ... Instead of one AI trying to do everything, agentic swarms assign roles. A "planner" agent breaks down the task, "coder" agents write the code, and a "critic" agent reviews the work. This mirrors a human software team and is the principle behind frameworks like Claude Flow, developed by Toronto-based Reuven Cohen. Bercovici described it as a system where "tens of instances of Claude code in parallel are being orchestrated to work on specifications, documentation... the full CICD DevOps life cycle." This is the engine behind the agentic swarm, condensing a month of teamwork into a single hour.


The Role of Human-in-the-Loop in AI-Driven Data Management

Human-in-the-loop (HITL) is no longer a niche safety net—it’s becoming a foundational strategy for operationalizing trust. Especially in healthcare and financial services, where data-driven decisions must comply with strict regulations and ethical expectations, keeping humans strategically involved in the pipeline is the only way to scale intelligence without surrendering accountability. ... The goal of HITL is not to slow systems down, but to apply human oversight where it is most impactful. Overuse can create workflow bottlenecks and increase operational overhead. But underuse can result in unchecked bias, regulatory breaches, or loss of public trust. Leading organizations are moving toward risk-based HITL frameworks that calibrate oversight based on the sensitivity of the data and the consequences of error. ... As AI systems become more agentic—capable of taking actions, not just making predictions—the role of human judgment becomes even more critical. HITL strategies must evolve beyond spot-checks or approvals. They need to be embedded in design, monitored continuously, and measured for efficacy. For data and compliance leaders, HITL isn’t a step backward from digital transformation. It provides a scalable approach to ensure that AI is deployed responsibly—especially in sectors where decisions carry long-term consequences.


AI vs Gen Z: How AI has changed the career pathway for junior developers

Ethical dilemmas aside, an overreliance on AI obviously causes an atrophy of skills for young thinkers. Why spend time reading your textbooks when you can get the answers right away? Why bother working through a particularly difficult homework problem when you can just dump it into an AI to give you the answer? To form the critical thinking skills necessary for not just a fruitful career, but a happy life, must include some of the discomfort that comes from not knowing. AI tools eliminate the discovery phase of learning—that precious, priceless part where you root around blindly until you finally understand. ... The truth is that AI has made much of what junior developers of the past did redundant. Gone are the days of needing junior developers to manually write code or debug, because now an already tenured developer can just ask their AI assistant to do it. There’s even some sentiment that AI has made junior developers less competent, and that they’ve lost some of the foundational skills that make for a successful entry-level employee. See above section on AI in school if you need a refresher on why this might be happening. ... More optimistic outlooks on the AI job market see this disruption as an opportunity for early career professionals to evolve their skillsets to better fit an AI-driven world. If I believe in nothing else, I believe in my generation’s ability to adapt, especially to technology.

Daily Tech Digest - September 08, 2025


Quote for the day:

"Let no feeling of discouragement prey upon you, and in the end you are sure to succeed." -- Abraham Lincoln


Coding With AI Assistants: Faster Performance, Bigger Flaws

One challenge comes in the form of how AI coding assistants tend to package their code. Rather than delivering bite-size pieces, they generally deliver larger code pull requests for porting into the main project repository. Apiiro saw AI code assistants deliver three to four times as many code commits - meaning changes to a code repository - than non-AI code assistants, but packaging fewer pull requests. The problem is that larger PRs are inherently riskier and more time-consuming to verify. "Bigger, multi-touch PRs slow review, dilute reviewer attention and raise the odds that a subtle break slips through," said Itay Nussbaum, a product manager at Apiiro. ... At the same time, the tools generated deeper problems, in the form of a 150% increase in architectural flaws and an 300% increase in privilege issues. "These are the kinds of issues scanners miss and reviewers struggle to spot - broken auth flows, insecure designs, systemic weaknesses," Nussbaum said. "In other words, AI is fixing the typos but creating the time bombs." The tools also have a greater tendency to leak cloud credentials. "Our analysis found that AI-assisted developers exposed Azure service principals and storage access keys nearly twice as often as their non-AI peers," Nussbaum said. "Unlike a bug that can be caught in testing, a leaked key is live access: an immediate path into the production cloud infrastructure."


IT Leadership Is More Change Management Than Technical Management

Planning is considered critical in business to keep an organization moving forward in a predictable way, but Mahon doesn’t believe in the traditional annual and long-term planning in which lots of time is invested in creating the perfect plan which is then executed. “Never get too engaged in planning. You have a plan, but it’s pretty broad and open-ended. The North Star is very fuzzy, and it never gets to be a pinpoint [because] you need to focus on all the stuff that's going on around you,” says Mahon. “You should know exactly what you're going to do in the next two to three months. From three to six months out, you have a really good idea what you're going to do but be prepared to change. And from six to nine months or a year, [I wait until] we get three months away before I focus on it because tech and business needs change rapidly.” ... “The good ideas are mostly common knowledge. To be honest, I don’t think there are any good self-help books. Instead, I have a leadership coach who is also my mental health coach,” says Mahon. “Books try to get you to change who you are, and it doesn’t work. Be yourself. I have a leadership coach who points out my flaws, 90% of which I’m already aware of. His philosophy is don’t try to fix the flaw, address the flaw so, for example, I’m mindful about my tendency to speak too directly.”


The Anatomy of SCREAM: A Perfect Storm in EA Cupboard

SCREAM- Situational Chaotic Realities of Enterprise Architecture Management- captures the current state of EA practice, where most organizations, from medium to large complexity, struggle to derive optimal value from investments in enterprise architecture capabilities. It’s the persistent legacy challenges across technology stacks and ecosystems that need to be solved to meet strategic business goals and those moments when sudden, ill-defined executive needs are met with a hasty, reactive sprint, leading to a fractured and ultimately paralyzing effect on the entire organization. ... The paradox is that the very technologies offering solutions to business challenges are also key sources of architectural chaos, further entrenching reactive SCREAM. As noted, the inevitable chaos and fragmentation that emerge from continuous technology additions lead to silos and escalating compatibility issues. ... The chaos of SCREAM is not just an external force; it’s a product of our own making. While we preach alignment to the business, we often get caught up in our own storm in an EA cupboard. How often do we play EA on EA? ... While pockets of recognizable EA wins may exist through effective engagement, a true, repeatable value-add requires a seat at the strategic table. This means “architecture-first” must evolve beyond being a mere buzzword or a token effort, becoming a reliable approach that promotes collaborative success rather than individual credit-grabbing.


How Does Network Security Handle AI?

Detecting when AI models begin to vary and yield unusual results is the province of AI specialists, users and possibly the IT applications staff. But the network group still has a role in uncovering unexpected behavior. That role includes: Properly securing all AI models and data repositories on the network. Continuously monitoring all access points to the data and the AI system. Regularly scanning for network viruses and any other cyber invaders that might be lurking. ... both application and network teams need to ensure strict QA principles across the entire project -- much like network vulnerability testing. Develop as many adversarial prompt tests coming from as many different directions and perspectives as you can. Then try to break the AI system in the same way a perpetrator would. Patch up any holes you find in the process. ... Apply least privilege access to any AI resource on the network and continually monitor network traffic. This philosophy should also apply to those on the AI application side. Constrict the AI model being used to the specific use cases for which it was intended. In this way, the AI resource rejects any prompts not directly related to its purpose. ... Red teaming is ethical hacking. In other words, deploy a team whose goal is to probe and exploit the network in any way it can. The aim is to uncover any network or AI vulnerability before a bad actor does the same.


Lack of board access: The No. 1 factor for CISO dissatisfaction

CISOs who don’t get access to the board are often buried within their organizations. “There are a lot of companies that will hire at a director level or even a senior manager level and call it a CISO. But they don’t have the authority and scope to actually be able to execute what a CISO does,” says Nick Kathmann, CISO at LogicGate. Instead of reporting directly to the board or CEO, these CISOs will report to a CIO, CTO or other executive, despite the problems that can arise in this type of reporting structure. CIOs and CTOs are often tasked with implementing new technology. The CISO’s job is to identity risks and ensure the organization is secure. “If the CIO doesn’t like those risks or doesn’t want to do anything to fix those risks, they’ll essentially suppress them [CISOs] as much as they can,” says Kathmann. ... Getting in front of the board is one thing. Effectively communicating cybersecurity needs and getting them met is another. It starts with forming relationships with C-suite peers. Whether CISOs are still reporting up to another executive or not, they need to understand their peers’ priorities and how cybersecurity can mesh with those. “The CISO job is an executive job. As an executive, you rely completely on your peer relationships. You can’t do anything as an executive in a vacuum,” says Barrack. Working in collaboration, rather than contention, with other executives can prepare CISOs to make the most of their time in front of the board.


From Vault Sprawl to Governance: How Modern DevOps Teams Can Solve the Multi-Cloud Secrets Management Nightmare

Every time an application is updated or a new service is deployed, one or multiple new identities are born. These NHIs include service accounts, CI/CD pipelines, containers, and other machine workloads, the running pieces of software that connect to other resources and systems to do work. Enterprises now commonly see 100 or more NHIs for every single human identity. And that number keeps growing. ... Fixing this problem is possible, but it requires an intentional strategy. The first step is creating a centralized inventory of all secrets. This includes secrets stored in vaults, embedded in code, or left exposed in CI/CD pipelines and environments. Orphaned and outdated secrets should be identified and removed. Next, organizations must shift left. Developers and DevOps teams require tools to detect secrets early, before they are committed to source control or merged into production. Educating teams and embedding detection into the development process significantly reduces accidental leaks. Governance must also include lifecycle mapping. Secrets should be enriched with metadata such as owner, creation date, usage frequency, and last rotation. Automated expiration and renewal policies help enforce consistency and reduce long-term risk. Contributions should be both product- and vendor-agnostic, focusing on market insights and thought leadership.


Digital Public Infrastructure: The backbone of rural financial inclusion

When combined, these infrastructures — UPI for payments, ONDC for commerce, AAs for credit, CSCs for handholding support and broadband for connectivity form a powerful ecosystem. Together, these enable a farmer to sell beyond the village, receive instant payment and leverage that income proof for a micro-loan, all within a seamless digital journey. Adding to this, e-KYC ensures that identity verification is quick, low-cost and paperless, while AePS provides last-mile access to cash and banking services, ensuring inclusion even for those outside the smartphone ecosystem. This integration reduces dependence on middlemen, enhances transparency and fosters entrepreneurship. ...  Of course, progress does not mean perfection. There are challenges that must be addressed with urgency and sensitivity. Many rural merchants hesitate to fully embrace digital commerce due to uncertainties around Goods and Services Tax (GST) compliance. Digital literacy, though improving, still varies widely, particularly among older populations and women. Infrastructure costs such as last-mile broadband and device affordability remain burdensome for small operators. These are not reasons to slow down but opportunities to fine-tune policy. Simplifying tax processes for micro-enterprises, investing in vernacular digital literacy programmes, subsidising rural connectivity and embedding financial education into community touchpoints such as CSCs will be essential to ensure no one is left behind.


Cybersecurity research is getting new ethics rules, here’s what you need to know

Ethics analysis should not be treated as a one-time checklist. Stakeholder concerns can shift as a project develops, and researchers may need to revisit their analysis as they move from design to execution to publication. ...“Stakeholder ethical concerns impact academia, industry, and government,” Kalu said. “Security teams should replace reflexive defensiveness with structured collaboration: recognize good-faith research, provide intake channels and SLAs, support coordinated disclosure and pre-publication briefings, and engage on mitigation timelines. A balanced, invitational posture, rather than an adversarial one, will reduce harm, speed remediation, and encourage researchers to keep working on that project.” ... While the new requirements target academic publishing, the ideas extend to industry practice. Security teams often face similar dilemmas when deciding whether to disclose vulnerabilities, release tools, or adopt new defensive methods. Thinking in terms of stakeholders provides a way to weigh the benefits and risks of those decisions. ... Peng said ethical standards should be understood as “scaffolds that empower thoughtful research,” providing clarity and consistency without blocking exploration of adversarial scenarios. “By building ethics into the process from the start and revisiting it as research develops, we can both protect stakeholders and ensure researchers can study the potential threats that adversaries, who face no such constraints, may exploit,” she said.


From KYC to KYAI: Why ‘Algorithmic Transparency’ is Now Critical in Banking

This growing push for transparency into AI models has introduced a new acronym to the risk and compliance vernacular: KYAI, or "know your AI." Just like finance institutions must know the important details about their customers, so too must they understand the essential components of their AI models. The imperative has evolved beyond simply knowing "who" to "how." Based on my work helping large banks and other financial institutions integrate AI into their KYC workflows over the last few years, I’ve seen what can happen when these teams spend the time vetting their AI models and applying rigorous transparency standards. And, I’ve seen what can happen when they become overly trusting of black-box algorithms that deliver decisions based on opaque methods with no ability to attribute accountability. The latter rarely ever ends up being the cheapest or fastest way to produce meaningful results. ... The evolution from KYC to KYAI is not merely driven by regulatory pressure; it reflects a fundamental shift in how businesses operate today. Financial institutions that invest in AI transparency will be equipped to build greater trust, reduce operational risks, and maintain auditability without missing a step in innovation. The transformation from black box AI to transparent, governable systems represents one of the most significant operational challenges facing financial institutions today.


Why compliance clouds are essential

From a technical perspective, compliance clouds offer something that traditional clouds can’t match, these are the battle-tested security architectures. By implementing them, the organizations can reduce their data breach risk by 30-40% compared to standard cloud deployments. This is because compliance clouds are constantly reviewed and monitored by third-party experts, ensuring that we are not just getting compliance, but getting an enterprise-grade security that’s been validated by some of the most security-conscious organizations in the world. ... What’s particularly interesting is that 58% of this market is software focused. As organizations prioritize automation and efficiency in managing complex regulatory requirements, this number is set to grow further. Over 75% of federal agencies have already shifted to cloud-based software to meet evolving compliance needs. Following this, we at our organizations have also achieved FedRAMP® High Ready compliance for Cloud. ... Cloud compliance solutions deliver far-reaching benefits that extend well beyond regulatory adherence, offering a powerful mix of cost efficiency, trust building, adaptability, and innovation enablement. ... In an era where trust is a competitive currency, compliance cloud certifications serve as strong differentiators, signaling an organization’s unwavering commitment to data protection and regulatory excellence.

Daily Tech Digest - September 06, 2025


Quote for the day:

"Average leaders raise the bar on themselves; good leaders raise the bar for others; great leaders inspire others to raise their own bar." -- Orrin Woodward


Why Most AI Pilots Never Take Flight

The barrier is not infrastructure, regulation or talent but what the authors call "learning gap." Most enterprise AI systems cannot retain memory, adapt to feedback or integrate into workflows. Tools work in isolation, generating content or analysis in a static way, but fail to evolve alongside the organizations that use them. For executives, the result is a sea of proofs of concept with little business impact. "Chatbots succeed because they're easy to try and flexible, but fail in critical workflows due to lack of memory and customization," the report said. Many pilots never survive this transition, Mina Narayanan, research analyst at the Center for Security and Emerging Technology, told Information Security Media Group. ... The implications of this shadow economy are complex. On one hand, it shows clear employee demand, as workers gravitate toward flexible, responsive and familiar tools. On the other, it exposes enterprises to compliance and security risks. Corporate lawyers and procurement officers interviewed in the report admitted they rely on ChatGPT for drafting or analysis, even when their firms purchased specialized tools costing tens of thousands of dollars. When asked why they preferred consumer tools, their answers were consistent: ChatGPT produced better outputs, was easier to iterate with and required less training. "Our purchased AI tool provided rigid summaries with limited customization options," one attorney told the researchers. 


Breaking into cybersecurity without a technical degree: A practical guide

Think of cybersecurity as a house. While penetration testers and security engineers focus on building stronger locks and alarm systems, GRC professionals ensure the house has strong foundations, insurance policies and meets all building regulations. ... Governance involves creating and maintaining the policies, procedures and frameworks that guide an organisation’s security decisions. Risk management focuses on identifying potential threats, assessing their likelihood and impact, then developing strategies to mitigate or accept those risks. ... Certifications alone will not land you a role. This is not understood by most people wanting to take this path. Understanding key frameworks provides the practical knowledge that makes certifications meaningful. ISO 27001, the international standard for information security management systems, appears in most GRC job descriptions. I spent considerable time learning not only what ISO 27001 requires, but how organizations implement its controls in practice. The NIST Cybersecurity Framework (CSF) deserves equal attention. NIST CSF’s six core functions — govern, identify, protect, detect, respond and recover — provide a logical structure for organising security programs that business stakeholders can understand. Personal networks proved more valuable than any job board or recruitment agency. 


To Survive Server Crashes, IT Needs a 'Black Box'

Security teams utilize Security Information and Event Management (SIEM) systems, and DevOps teams have tracing tools. However, infrastructure teams still lack an equivalent tool: a continuously recorded, objective account of system interdependencies before, during, and after incidents. This is where Application Dependency Mapping (ADM) solutions come into play. ADM continuously maps the relationships between servers, applications, services, and external dependencies. Instead of relying on periodic scans or manual documentation, ADM offers real-time, time-stamped visibility. This allows IT teams to rewind their environment to any specific point in time, clearly identifying the connections that existed, which systems interacted, and how traffic flowed during an incident. ... Retrospective visibility is emerging as a key focus in IT infrastructure management. As hybrid and multi-cloud environments become increasingly complex, accurately diagnosing failures after they occur is essential for maintaining uptime, security, and business continuity. IT professionals must monitor systems in real time and learn how to reconstruct the complete story when failures happen. Similar to the aviation industry, which acknowledges that failures can occur and prepares accordingly, the IT sector must shift from reactive troubleshooting to a forensic-level approach to visibility.


Vibe coding with GitHub Spark

The GitHub Spark development space is a web application with three panes. The middle one is for code, the right one shows the running app (and animations as code is being generated), and the left one contains a set of tools. These tools offer a range of functions, first letting you see your prompts and skip back to older ones if you don’t like the current iteration of your application. An input box allows you to add new prompts that iterate on your current generated code, with the ability to choose a screenshot or change the current large language model (LLM) being used by the underlying GitHub Copilot service. I used the default choice, Anthropic’s Claude Sonnet 3.5. As part of this feature, GitHub Spark displays a small selection of possible refinements that take concepts related to your prompts and suggest enhancements to your code. Other controls provide ways to change low-level application design options, including the current theme, font, or the style used for application icons. Other design tools allow you to tweak the borders of graphical elements, the scaling factors used, and to pick an application icon for an install of your code based on Progressive Web Apps (PWAs). GitHub Spark has a built-in key/value store for application data that persists between builds and sessions. The toolbar provides a list of the current key and the data structure used for the value store. 


Legacy IT Infrastructure: Not the Villain We Make It Out to Be

In the realm of IT infrastructure, legacy can often feel like a bad word. No one wants to be told their organization is stuck with legacy IT infrastructure because it implies that it's old or outdated. Yet, when you actually delve into the details of what legacy means in the context of servers, networking, and other infrastructure, a more complex picture emerges. Legacy isn't always bad. ... it's not necessarily the case that a system is bad, or in dire need of replacement, just because it fits the classic definition of legacy IT. There's an argument to be made that, in many cases, legacy systems are worth keeping around. For starters, most legacy infrastructure consists of tried-and-true solutions. If a business has been using a legacy system for years, it's a reliable investment. It may not be as optimal from a cost, scalability, or security perspective as a more modern alternative. But in some cases, this drawback is outweighed by the fact that — unlike a new, as-yet-unproven solution — legacy systems can be trusted to do what they claim to do because they've already been doing it for years. The fact that legacy systems have been around for a while also means that it's often easy to find engineers who know how to work with them. Hiring experts in the latest, greatest technology can be challenging, especially given the widespread IT talent shortage. 



How to Close the AI Governance Gap in Software Development

Despite the advantages, only 42 percent of developers trust the accuracy of AI output in their workflows. In our observations, this should not come as a surprise – we’ve seen even the most proficient developers copying and pasting insecure code from large language models (LLMs) directly into production environments. These teams are under immense pressure to produce more lines of code faster than ever. Because security teams are also overworked, they aren’t able to provide the same level of scrutiny as before, causing overlooked and possibly harmful flaws to proliferate. The situation brings the potential for widespread disruption: BaxBench oversees a coding benchmark to evaluate LLMs for accuracy and security, and has reported that LLMs are not yet capable of generating deployment-ready code. ... What’s more, they often lack the expertise – or don’t even know where to begin – to review and validate AI-enabled code. This disconnect only further elevates their organization’s risk profile, exposing governance gaps. To keep everything from spinning out of control, chief information security officers (CISOs) must work with other organizational leaders to implement a comprehensive and automated governance plan that enforces policies and guardrails, especially within the repository workflow.


The Complexity Crisis: Why Observability Is the Foundation of Digital Resilience

End-to-end observability is evolving beyond its current role in IT and DevOps to become a foundational element of modern business strategy. In doing so, observability plays a critical role in managing risk, maintaining uptime, and safeguarding digital trust. Observability also enables organizations to proactively detect anomalies before they escalate into outages, quickly pinpoint root causes across complex, distributed systems, and automate response actions to reduce mean time to resolution (MTTR). The result is faster, smarter and more resilient operations, giving teams the confidence to innovate without compromising system stability, a critical advantage in a world where digital resilience and speed must go hand in hand. ... As organizations increasingly adopt generative and agentic AI to accelerate innovation, they also expose themselves to new kinds of risks. Agentic AI can be configured to act independently, making changes, triggering workflows, or even deploying code without direct human involvement. This level of autonomy can boost productivity, but it also introduces serious challenges. ... Tomorrow’s industry leaders will be distinguished by their ability to adopt and adapt to new technologies, embracing agentic AI but recognizing the heightened risk exposure and compliance burdens. Leaders will need to shift from reactive operations to proactive and preventative operations.


AI and the end of proof

Fake AI images can lie. But people lie, too, saying real images are fake. Call it the ‘liar’s dividend.’ Call it a crisis of confidence. ... In 2019, when deepfake audio and video became a serious problem, legal experts Bobby Chesney and Danielle Citron came up with the term “liar’s dividend” to describe the advantage a dishonest public figure gets by calling real evidence “fake” in a time when AI-generated content makes people question what they see and hear. False claims of deepfakes can be just as harmful as real deepfakes during elections. ... The ability to make fakes will be everywhere, along with the growing awareness that visual information can be easily and convincingly faked. That awareness makes false claims that something is AI-made more believable. The good news is that Gemini 2.5 Flash Image stamps every image it makes or edits with a hidden SynthID watermark for AI identification after common changes like resizing, rotation, compression, or screenshot copies. Google says this ID system covers all outputs and ships with the new model across the Gemini API, Google AI Studio, and Vertex AI. SynthID for images changes pixels without being seen, but a paired detector can recognize it later, using one neural network to embed the pattern and another to spot it. The detector reports levels like “present,” “suspected,” or “not detected,” which is more helpful than a fragile yes/no that fails after small changes.


Beyond the benchmarks: Understanding the coding personalities of different LLMs

Though the models did have these distinct personalities, they also shared similar strengths and weaknesses. The common strengths were that they quickly produced syntactically correct code, had solid algorithmic and data structure fundamentals, and efficiently translated code to different languages. The common weaknesses were that they all produced a high percentage of high-severity vulnerabilities, introduced severe bugs like resource leaks or API contract violations, and had an inherent bias towards messy code. “Like humans, they become susceptible to subtle issues in the code they generate, and so there’s this correlation between capability and risk introduction, which I think is amazingly human,” said Fischer. Another interesting finding of the report is that newer models may be more technically capable, but are also more likely to generate risky code. ... In terms of security, high and low reasoning modes eliminate common attacks like path-traversal and injection, but replace them with harder-to-detect flaws, like inadequate I/O error-handling. ... “We have seen the path-traversal and injection become zero percent,” said Sarkar. “We can see that they are trying to solve one sector, and what is happening is that while they are trying to solve code quality, they are somewhere doing this trade-off. Inadequate I/O error-handling is another problem that has skyrocketed. ...”


Agentic AI Isn’t a Product – It’s an Integrated Business Strategy

Any leader considering agentic AI should have a clear understanding of what it is (and what it’s not!), which can be difficult considering many organizations are using the term in different ways. To understand what makes the technology so transformative, I think it’s helpful to contract it with the tools many manufacturers are already familiar with. ... Agentic AI doesn’t just help someone do a task. It owns that task, end-to-end, like a trusted digital teammate. If a traditional AI solution is like a dashboard, agentic AI is more like a co-worker who has deep operational knowledge, learns fast, doesn’t need a break and knows exactly when to ask for help. This is also where misconceptions tend to creep in. Agentic AI isn’t a chatbot with a nicer interface that happens to use large language models, nor is it a one-size-fits-all product that slots in after implementation. It’s a purpose-built, action-oriented intelligence that lives inside your operations and evolves with them. ... Agentic AI isn’t a futuristic technology, either. It’s here and gaining momentum fast. According to Capgemini, the number of organizations using AI agents has doubled in the past year, with production-scale deployments expected to reach 48% by 2025. The technology’s adoption trajectory is a sharp departure from traditional AI technologies.

Daily Tech Digest - August 31, 2025


Quote for the day:

“Our chief want is someone who will inspire us to be what we know we could be.” -- Ralph Waldo Emerson



A Brief History of GPT Through Papers

The first neural network based language translation models operated in three steps (at a high level). An encoder would embed the “source statement” into a vector space, resulting in a “source vector”. Then, the source vector would be mapped to a “target vector” through a neural network and finally a decoder would map the resulting vector to the “target statement”. People quickly realized that the vector that was supposed to encode the source statement had too much responsibility. The source statement could be arbitrarily long. So, instead of a single vector for the entire statement, let’s convert each word into a vector and then have an intermediate element that would pick out the specific words that the decoder should focus more on. ... The mechanism by which the words were converted to vectors was based on recurrent neural networks (RNNs). Details of this can be obtained from the paper itself. These recurrent neural networks relied on hidden states to encode the past information of the sequence. While it’s convenient to have all that information encoded into a single vector, it’s not good for parallelizability since that vector becomes a bottleneck and must be computed before the rest of the sentence can be processed. ... The idea is to give the model demonstrative examples at inference time as opposed to using them to train its parameters. If no such examples are provided in-context, it is called “zero shot”. If one example is provided, “one shot” and if a few are provided, “few shot”.


8 Powerful Lessons from Robert Herjavec at Entrepreneur Level Up That Every Founder Needs to Hear

Entrepreneurs who remain curious — asking questions and seeking insights — often discover pathways others overlook. Instead of dismissing a "no" or a difficult response, Herjavec urged attendees to look for the opportunity behind it. Sometimes, the follow-up question or the willingness to listen more deeply is what transforms rejection into possibility. ... while breakthrough innovations capture headlines, the majority of sustainable businesses are built on incremental improvements, better execution and adapting existing ideas to new markets. For entrepreneurs, this means it's okay if your business doesn't feel revolutionary from day one. What matters is staying committed to evolving, improving and listening to the market. ... setbacks are inevitable in entrepreneurship. The real test isn't whether you'll face challenges, but how you respond to them. Entrepreneurs who can adapt — whether by shifting strategy, reinventing a product or rethinking how they serve customers — are the ones who endure. ... when leaders lose focus, passion or clarity, the organization inevitably follows. A founder's vision and energy cascade down into the culture, decision-making and execution. If leaders drift, so does the company. For entrepreneurs, this is a call to self-reflection. Protect your clarity of purpose. Revisit why you started. And remember that your team looks to you not just for direction, but for inspiration. 


The era of cheap AI coding assistants may be over

Developers have taken to social media platforms and GitHub to express their dissatisfaction over the pricing changes, especially across tools like Claude Code, Kiro, and Cursor, but vendors have not adjusted pricing or made any changes that significantly reduce credits consumption. Analysts don’t see any alternative to reducing the pricing of these tools. "There’s really no alternative until someone figures out the following: how to use cheaper but dumber models than Claude Sonnet 4 to achieve the same user experience and innovate on KVCache hit rate to reduce the effective price per dollar,” said Wei Zhou, head of AI utility research at SemiAnalysis. Considering the market conditions, CIOs and their enterprises need to start absorbing the cost and treat vibe coding tools as a productivity expense, according to Futurum’s Hinchcliffe. “CIOs should start allocating more budgets for vibe coding tools, just as they would do for SaaS, cloud storage, collaboration tools or any other line items,” Hinchcliffe said. “The case of ROI on these tools is still strong: faster shipping, fewer errors, and higher developer throughput. Additionally, a good developer costs six figures annually, while vibe coding tools are still priced in the low-to-mid thousands per seat,” Hinchcliffe added. ... “Configuring assistants to intervene only where value is highest and choosing smaller, faster models for common tasks and saving large-model calls for edge cases could bring down expenditure,” Hinchcliffe added.


AI agents need intent-based blockchain infrastructure

By integrating agents with intent-centric systems, however, we can ensure users fully control their data and assets. Intents are a type of building block for decentralized applications that give users complete control over the outcome of their transactions. Powered by a decentralized network of solvers, agentic nodes that compete to solve user transactions, these systems eliminate the complexity of the blockchain experience while maintaining user sovereignty and privacy throughout the process. ... Combining AI agents and intents will redefine the Web3 experience while keeping the space true to its core values. Intents bridge users and agents, ensuring the UX benefits users expect from AI while maintaining decentralization, sovereignty and verifiability. Intent-based systems will play a crucial role in the next phase of Web3’s evolution by ensuring agents act in users’ best interests. As AI adoption grows, so does the risk of replicating the problems of Web2 within Web3. Intent-centric infrastructure is the key to addressing both the challenges and opportunities that AI agents bring and is necessary to unlock their full potential. Intents will be an essential infrastructure component and a fundamental requirement for anyone integrating or considering integrating AI into DeFi. Intents are not merely a type of UX upgrade or optional enhancement. 


The future of software development: To what can AI replace human developers?

Rather than replacing developers, AI is transforming them into higher-level orchestrators of technology. The emerging model is one of human-AI collaboration, where machines handle the repetitive scaffolding and humans focus on design, strategy, and oversight. In this new world, developers must learn not just to write code, but to guide, prompt, and supervise AI systems. The skillset is expanding from syntax and logic to include abstraction, ethical reasoning, systems thinking, and interdisciplinary collaboration. In other words, AI is not making developers obsolete. It is making new demands on their expertise. ... This shift has significant implications for how we educate the next generation of software professionals. Beyond coding languages, students will need to understand how to evaluate AI- AI-generated output, how to embed ethical standards into automated systems, and how to lead hybrid teams made up of both humans and machines. It also affects how organisations hire and manage talent. Companies must rethink job descriptions, career paths, and performance metrics to account for the impact of AI-enabled development. Leaders must focus on AI literacy, not just technical competence. Professionals seeking to stay ahead of the curve can explore free programs, such as The Future of Software Engineering Led by Emerging Technologies, which introduces the evolving role of AI in modern software development.


Open Data Fabric: Rethinking Data Architecture for AI at Scale

The first principle, unified data access, ensures that agents have federated real-time access across all enterprise data sources without requiring pipelines, data movement, or duplication. Unlike human users who typically work within specific business domains, agents often need to correlate information across the entire enterprise to generate accurate insights. ... The second principle, unified contextual intelligence, involves providing agents with the business and technical understanding to interpret data correctly. This goes far beyond traditional metadata management to include business definitions, domain knowledge, usage patterns, and quality indicators from across the enterprise ecosystem. Effective contextual intelligence aggregates information from metadata, data catalogs, business glossaries, business intelligence tools, and tribal knowledge into a unified layer that agents can access in real-time.  ... Perhaps the most significant principle involves establishing collaborative self-service. This is a significant shift as it means moving from static dashboards and reports to dynamic, collaborative data products and insights that agents can generate and share with each other. The results are trusted “data answers,” or conversational, on-demand data products for the age of AI that include not just query results but also the business context, methodology, lineage, and reasoning that went into generating them.


A Simple Shift in Light Control Could Revolutionize Quantum Computing

A research collaboration led by Vikas Remesh of the Photonics Group at the Department of Experimental Physics, University of Innsbruck, together with partners from the University of Cambridge, Johannes Kepler University Linz, and other institutions, has now demonstrated a way to bypass these challenges. Their method relies on a fully optical process known as stimulated two-photon excitation. This technique allows quantum dots to emit streams of photons in distinct polarization states without the need for electronic switching hardware. In tests, the researchers successfully produced high-quality two-photon states while maintaining excellent single-photon characteristics. ... “The method works by first exciting the quantum dot with precisely timed laser pulses to create a biexciton state, followed by polarization-controlled stimulation pulses that deterministically trigger photon emission in the desired polarization,” explain Yusuf Karli and Iker Avila Arenas, the study’s first authors. ... “What makes this approach particularly elegant is that we have moved the complexity from expensive, loss-inducing electronic components after the single photon emission to the optical excitation stage, and it is a significant step forward in making quantum dot sources more practical for real-world applications,” notes Vikas Remesh, the study’s lead researcher.


AI and the New Rules of Observability

The gap between "monitoring" and true observability is both cultural and technological. Enterprises haven't matured beyond monitoring because old tools weren't built for modern systems, and organizational cultures have been slow to evolve toward proactive, shared ownership of reliability. ... One blind spot is model drift, which occurs when data shifts, rendering its assumptions invalid. In 2016, Microsoft's Tay chatbot was a notable failure due to its exposure to shifting user data distributions. Infrastructure monitoring showed uptime was fine; only semantic observability of outputs would have flagged the model's drift into toxic behavior. Hidden technical debt or unseen complexity in code can undermine observability. In machine learning, or ML, systems, pipelines often fail silently, while retraining processes, feature pipelines and feedback loops create fragile dependencies that traditional monitoring tools may overlook. Another issue is "opacity of predictions." ... AI models often learn from human-curated priorities. If ops teams historically emphasized CPU or network metrics, the AI may overweigh those signals while downplaying emerging, equally critical patterns - for example, memory leaks or service-to-service latency. This can occur as bias amplification, where the model becomes biased toward "legacy priorities" and blind to novel failure modes. Bias often mirrors reality.


Dynamic Integration for AI Agents – Part 1

An integration of components within AI differs from an integration between AI agents. The former relates to integration with known entities that form a deterministic model of information flow. The same relates to inter-application, inter-system and inter-service transactions required by a business process at large. It is based on mapping of business functionality and information (an architecture of the business in organisations) onto available IT systems, applications, and services. The latter shifts the integration paradigm since the very AI Agents decide that they need to integrate with something at runtime based on the overlapping of the statistical LLM and available information, which contains linguistic ties unknown even in the LLM training. That is, an AI Agent does not know what a counterpart — an application, another AI Agent or data source — it would need to cooperate with to solve the overall task given to it by its consumer/user. The AI Agent does not know even if the needed counterpart exists. ... Any AI Agent may have its individual owner and provider. These owners and providers may be unaware of each others and act independently when creating their AI Agents. No AI Agent can be self-sufficient due to its fundamental design — it depends on the prompts and real-world data at runtime. It seems that the approaches to integration and the integration solutions differ for the humanitarian and natural science spheres.


Counteracting Cyber Complacency: 6 Security Blind Spots for Credit Unions

Organizations that conduct only basic vendor vetting lack visibility into the cybersecurity practices of their vendors’ subcontractors. This creates gaps in oversight that attackers can exploit to gain access to an institution’s data. Third-party providers often have direct access to critical systems, making them an attractive target. When they’re compromised, the consequences quickly extend to the credit unions they serve. ... Cybercriminals continue to exploit employee behavior as a primary entry point into financial institutions. Social engineering tactics — such as phishing, vishing, and impersonation — bypass technical safeguards by manipulating people. These attacks rely on trust, familiarity, or urgency to provoke an action that grants the attacker access to credentials, systems, or internal data. ... Many credit unions deliver cybersecurity training on an annual schedule or only during onboarding. These programs often lack depth, fail to differentiate between job functions, and lose effectiveness over time. When training is overly broad or infrequent, staff and leadership alike may be unprepared to recognize or respond to threats. The risk is heightened when the threats are evolving faster than the curriculum. TruStage advises tailoring cyber education to the institution’s structure and risk profile. Frontline staff who manage member accounts face different risks than board members or vendors. 

Daily Tech Digest - August 28, 2025


Quote for the day:

“Rarely have I seen a situation where doing less than the other guy is a good strategy.” -- Jimmy Spithill


Emerging Infrastructure Transformations in AI Adoption

Balanced scaling of infrastructure storage and compute clusters optimizes resource use in the face of emerging elastic use cases. Throughput, latency, scalability, and resiliency are key metrics for measuring storage performance. Scaling storage with demand for AI solutions without contributing to technical debt is a careful balance to contemplate for infrastructure transformations. ... Data governance in AI extends beyond traditional access control. ML workflows have additional governance tasks such as lineage tracking, role-based permissions for model modification, and policy enforcement over how data is labeled, versioned, and reused. This includes dataset documentation, drift tracking, and LLM-specific controls over prompt inputs and generated outputs. Governance frameworks that support continuous learning cycles are more valuable: Every inference and user correction can become training data. ... As models become more stateful and retain context over time, pipelines must support real-time, memory-intensive operations. Even Apache Spark documentation hints at future support for stateful algorithms (models that maintain internal memory of past interactions), reflecting a broader industry trend. AI workflows are moving toward stateful "agent" models that can handle ongoing, contextual tasks rather than stateless, single-pass processing.


The rise of the creative cybercriminal: Leveraging data visibility to combat them

In response to the evolving cyber threats faced by organisations and governments, a comprehensive approach that addresses both the human factor and their IT systems is essential. Employee training in cybersecurity best practices, such as adopting a zero-trust approach and maintaining heightened vigilance against potential threats, like social engineering attacks, are crucial. Similarly, cybersecurity analysts and Security Operations Centres (SOCs) play a pivotal role by utilising Security Information and Event Management (SIEM) solutions to continuously monitor IT systems, identifying potential threats, and accelerating their investigation and response times. Given that these tasks can be labor-intensive, integrating a modern SIEM solution that harnesses generative AI (GenAI) is essential. ... By integrating GenAI's data processing capabilities with an advanced search platform, cybersecurity teams can search at scale across vast amounts of data, including unstructured data. This approach supports critical functions such as monitoring, compliance, threat detection, prevention, and incident response. With full-stack observability, or in other words, complete visibility across every layer of their technology stack, security teams can gain access to content-aware insights, and the platform can swiftly flag any suspicious activity.


How to secure digital trust amid deepfakes and AI

To ensure resilience in the shifting cybersecurity landscape, organizations should proactively adopt a hybrid fraud-prevention approach, strategically integrating AI solutions with traditional security measures to build robust, layered defenses. Ultimately, a comprehensive, adaptive, and collaborative security framework is essential for enterprises to effectively safeguard against increasingly sophisticated cyberattacks – and there are several preemptive strategies organizations must leverage to counteract threats and strengthen their security posture. ... Fraudsters are adaptive, usually leveraging both advanced methods (deepfakes and synthetic identities) and simpler techniques (password spraying and phishing) to exploit vulnerabilities. By combining AI with tools like strong and continuous authentication, behavioral analytics, and ongoing user education, organizations can build a more resilient defense system. This hybrid approach ensures that no single point of failure exposes the entire system, and that both human and machine vulnerabilities are addressed. Recent threats rely on social engineering to obtain credentials, bypass authentication, and steal sensitive data, and it is evolving along with AI. Utilizing real-time verification techniques, such as liveness detection, can reliably distinguish between legitimate users and deepfake impersonators. 


Why Generative AI's Future Isn't in the Cloud

Instead of telling customers they needed to bring their data to the AI in the cloud, we decided to bring AI to the data where it's created or resides, locally on-premises or at the edge. We flipped the model by bringing intelligence to the edge, making it self-contained, secure and ready to operate with zero dependency on the cloud. That's not just a performance advantage in terms of latency, but in defense and sensitive use cases, it's a requirement. ... The cloud has driven incredible innovation, but it's created a monoculture in how we think about deploying AI. When your entire stack depends on centralized compute and constant connectivity, you're inherently vulnerable to outages, latency, bandwidth constraints, and, in defense scenarios, active adversary disruption. The blind spot is that this fragility is invisible until it fails, and by then the cost of that failure can be enormous. We're proving that edge-first AI isn't just a defense-sector niche, it's a resilience model every enterprise should be thinking about. ... The line between commercial and military use of AI is blurring fast. As a company operating in this space, how do you navigate the dual-use nature of your tech responsibly? We consider ourselves a dual-use defense technology company and we also have enterprise customers. Being dual use actually helps us build better products for the military because our products are also tested and validated by commercial customers and partners. 


Why DEI Won't Die: The Benefits of a Diverse IT Workforce

For technology teams, diversity is a strategic imperative that drives better business outcomes. In IT, diverse leadership teams generate 19% more revenue from innovation, solve complex problems faster, and design products that better serve global markets — driving stronger adoption, retention of top talent, and a sustained competitive edge. Zoya Schaller, director of cybersecurity compliance at Keeper Security, says that when a team brings together people with different life experiences, they naturally approach challenges from unique perspectives. ... Common missteps, according to Ellis, include over-focusing on meeting diversity hiring targets without addressing the retention, development, and advancement of underrepresented technologists. "Crafting overly broad or tokenistic job descriptions can fail to resonate with specific tech talent communities," she says. "Don't treat DEI as an HR-only initiative but rather embed it into engineering and leadership accountability." Schaller cautions that bias often shows up in subtle ways — how résumés are reviewed, who is selected for interviews, or even what it means to be a "culture fit." ... Leaders should be active champions of inclusivity, as it is an ongoing commitment that requires consistent action and reinforcement from the top.


The Future of Software Is Not Just Faster Code - It's Smarter Organizations

Using AI effectively doesn't just mean handing over tasks. It requires developers to work alongside AI tools in a more thoughtful way — understanding how to write structured prompts, evaluate AI-generated results and iterate them based on context. This partnership is being pushed even further with agentic AI. Agentic systems can break a goal into smaller steps, decide the best order to tackle them, tap into multiple tools or models, and adapt in real time without constant human direction. For developers, this means AI can do more than suggesting code. It can act like a junior teammate who can design, implement, test and refine features on its own. ... But while these tools are powerful, they're not foolproof. Like other AI applications, their value depends on how well they're implemented, tuned and interpreted. That's where AI-literate developers come in. It's not enough to simply plug in a tool and expect it to catch every threat. Developers need to understand how to fine-tune these systems to their specific environments — configuring scanning parameters to align with their architecture, training models to recognize application-specific risks and adjusting thresholds to reduce noise without missing critical issues. ... However, the real challenge isn't just finding AI talent, its reorganizing teams to get the most out of AI's capabilities. 


Industrial Copilots: From Assistants to Essential Team Members

Behind the scenes, industrial copilots are supported by a technical stack that includes predictive analytics, real-time data integration, and cross-platform interoperability. These assistants do more than just respond — they help automate code generation, validate engineering logic, and reduce the burden of repetitive tasks. In doing so, they enable faster deployment of production systems while improving the quality and efficiency of engineering work. Despite these advances, several challenges remain. Data remains the bedrock of effective copilots, yet many workers on the shop floor are still not accustomed to working with data directly. Upskilling and improving data literacy among frontline staff is critical. Additionally, industrial companies are learning that while not all problems need AI, AI absolutely needs high-quality data to function well. An important lesson shared during Siemens’ AI with Purpose Summit was the importance of a data classification framework. To ensure copilots have access to usable data without risking intellectual property or compliance violations, one company adopted a color-coded approach: white for synthetic data (freely usable), green for uncritical data (approval required), yellow for sensitive information, and red for internal IP (restricted to internal use only). 


Will the future be Consolidated Platforms or Expanding Niches?

Ramprakash Ramamoorthy believes enterprise SaaS is already making moves in consolidation. “The initial stage of a hype cycle includes features disguised as products and products disguised as companies. Well we are past that, many of these organizations that delivered a single product have to go through either vertical integration or sell out. In fact a lot of companies are mimicking those single-product features natively on large platforms.” Ramamoorthy says he also feels AI model providers will develop into enterprise SaaS organizations themselves as they continue to capture the value proposition of user data and usage signals for SaaS providers. This is why Zoho built their own AI backbone—to keep pace with competitive offerings and to maintain independence. On the subject of vibe-code and low-code tools, Ramamoorthy seems quite clear-eyed about their suitability for mass-market production. “Vibe-code can accelerate you from 0 to 1 faster, but particularly with the increase in governance and privacy, you need additional rigor. For example, in India, we have started to see compliance as a framework.” In terms of the best generative tools today, he observes “Anytime I see a UI or content generated by AI—I can immediately recognize the quality that is just not there yet.”


Beyond the Prompt: Building Trustworthy Agent Systems

While a basic LLM call responds statically to a single prompt, an agent system plans. It breaks down a high-level goal into subtasks, decides on tools or data needed, executes steps, evaluates outcomes, and iterates – potentially over long timeframes and with autonomy. This dynamism unlocks immense potential but can introduce new layers of complexity and security risk. ... Technology controls are vital but not comprehensive. That’s because the most sophisticated agent system can be undermined by human error or manipulation. This is where principles of human risk management become critical. Humans are often the weakest link. How does this play out with agents? Agents should operate with clear visibility. Log every step, every decision point, every data access. Build dashboards showing the agent’s “thought process” and actions. Enable safe interruption points. Humans must be able to audit, understand, and stop the agent when necessary. ... The allure of agentic AI is undeniable. The promise of automating complex workflows, unlocking insights, and boosting productivity is real. But realizing this potential without introducing unacceptable risk requires moving beyond experimentation into disciplined engineering. It means architecting systems with context, security, and human oversight at their core.


Where security, DevOps, and data science finally meet on AI strategy

The key is to define isolation requirements upfront and then optimize aggressively within those constraints. Make the business trade-offs explicit and measurable. When teams try to optimize first and secure second, they usually have to redo everything. However, when they establish their security boundaries, the optimization work becomes more focused and effective. ... The intersection with cost controls is immediate. You need visibility into whether your GPU resources are being utilized or just sitting idle. We’ve seen companies waste a significant portion of their budget on GPUs because they’ve never been appropriately monitored or because they are only utilized for short bursts, which makes it complex to optimize. ... Observability also helps you understand the difference between training workloads running on 100% utilization and inference workloads, where buffer capacity is needed for response times. ... From a security perspective, the very reason teams can get away with hoarding is the reason there may be security concerns. AI initiatives are often extremely high priority, where the ends justify the means. This often makes cost control an afterthought, and the same dynamic can also cause other enterprise controls to be more lax as innovation and time to market dominate.