Showing posts with label MCP. Show all posts
Showing posts with label MCP. Show all posts

Daily Tech Digest - August 10, 2025


Quote for the day:

"Don't worry about being successful but work toward being significant and the success will naturally follow." -- Oprah Winfrey


The Scrum Master: A True Leader Who Serves

Many people online claim that “Agile is a mindset”, and that the mindset is more important than the framework. But let us be honest, the term “agile mindset” is very abstract. How do we know someone truly has it? We cannot open their brain to check. Mindset manifests in different behaviour depending on culture and context. In one place, “commitment” might mean fixed scope and fixed time. In another, it might mean working long hours. In yet another, it could mean delivering excellence within reasonable hours. Because of this complexity, simply saying “agile is a mindset” is not enough. What works better is modelling the behaviour. When people consistently observe the Scrum Master demonstrating agility, those behaviours can become habits. ... Some Scrum Masters and agile coaches believe their job is to coach exclusively, asking questions without ever offering answers. While coaching is valuable, relying on it alone can be harmful if it is not relevant or contextual. Relevance is key to improving team effectiveness. At times, the Scrum Master needs to get their hands dirty. If a team has struggled with manual regression testing for twenty Sprints, do not just tell them to adopt Test-Driven Development (TDD). Show them. ... To be a true leader, the Scrum Master must be humble and authentic. You cannot fake true leadership. It requires internal transformation, a shift in character. As the saying goes, “Character is who we are when no one is watching.”


Vendors Align IAM, IGA and PAM for Identity Convergence

The historic separation of IGA, PAM and IAM created inefficiencies and security blind spots, and attackers exploited inconsistencies in policy enforcement across layers, said Gil Rapaport, chief solutions officer at CyberArk. By combining governance, access and privilege in a single platform, the company could close the gaps between policy enforcement and detection, Rapaport said. "We noticed those siloed markets creating inefficiency in really protecting those identities, because you need to manage different type of policies for governance of those identities and for securing the identities and for the authentication of those identities, and so on," Rapaport told ISMG. "The cracks between those silos - this is exactly where the new attack factors started to develop." ... Enterprise customers that rely on different tools for IGA, PAM, IAM, cloud entitlements and data governance are increasingly frustrated because integrating those tools is time-consuming and error-prone, Mudra said. Converged platforms reduce integration overhead and allow vendors to build tools that communicate natively and share risk signals, he said. "If you have these tools in silos, yes, they can all do different things, but you have to integrate them after the fact versus a converged platform comes with out-of-the-box integration," Mudra said. "So, these different tools can share context and signals out of the box."


The Importance of Technology Due Diligence in Mergers and Acquisitions

The primary reason for conducting technology due diligence is to uncover any potential risks that could derail the deal or disrupt operations post-acquisition. This includes identifying outdated software, unresolved security vulnerabilities, and the potential for data breaches. By spotting these risks early, you can make informed decisions and create risk mitigation strategies to protect your company. ... A key part of technology due diligence is making sure that the target company’s technology assets align with your business’s strategic goals. Whether it’s cloud infrastructure, software solutions, or hardware, the technology should complement your existing operations and provide a foundation for long-term growth. Misalignment in technology can lead to inefficiencies and costly reworks. ... Rank the identified risks based on their potential impact on your business and the likelihood of their occurrence. This will help prioritize mitigation efforts, so that you’re addressing the most critical vulnerabilities first. Consider both short-term risks, like pending software patches, and long-term issues, such as outdated technology or a lack of scalability. ... Review existing vendor contracts and third-party service provider agreements, looking for any liabilities or compliance risks that may emerge post-acquisition—especially those related to data access, privacy regulations, or long-term commitments. It’s also important to assess the cybersecurity posture of vendors and their ability to support integration.


From terabytes to insights: Real-world AI obervability architecture

The challenge is not only the data volume, but the data fragmentation. According to New Relic’s 2023 Observability Forecast Report, 50% of organizations report siloed telemetry data, with only 33% achieving a unified view across metrics, logs and traces. Logs tell one part of the story, metrics another, traces yet another. Without a consistent thread of context, engineers are forced into manual correlation, relying on intuition, tribal knowledge and tedious detective work during incidents. ... In the first layer, we develop the contextual telemetry data by embedding standardized metadata in the telemetry signals, such as distributed traces, logs and metrics. Then, in the second layer, enriched data is fed into the MCP server to index, add structure and provide client access to context-enriched data using APIs. Finally, the AI-driven analysis engine utilizes the structured and enriched telemetry data for anomaly detection, correlation and root-cause analysis to troubleshoot application issues. This layered design ensures that AI and engineering teams receive context-driven, actionable insights from telemetry data. ... The amalgamation of structured data pipelines and AI holds enormous promise for observability. We can transform vast telemetry data into actionable insights by leveraging structured protocols such as MCP and AI-driven analyses, resulting in proactive rather than reactive systems. 


MCP explained: The AI gamechanger

Instead of relying on scattered prompts, developers can now define and deliver context dynamically, making integrations faster, more accurate, and easier to maintain. By decoupling context from prompts and managing it like any other component, developers can, in effect, build their own personal, multi-layered prompt interface. This transforms AI from a black box into an integrated part of your tech stack. ... MCP is important because it extends this principle to AI by treating context as a modular, API-driven component that can be integrated wherever needed. Similar to microservices or headless frontends, this approach allows AI functionality to be composed and embedded flexibly across various layers of the tech stack without creating tight dependencies. The result is greater flexibility, enhanced reusability, faster iteration in distributed systems and true scalability. ... As with any exciting disruption, the opportunity offered by MCP comes with its own set of challenges. Chief among them is poorly defined context. One of the most common mistakes is hardcoding static values — instead, context should be dynamic and reflect real-time system states. Overloading the model with too much, too little or irrelevant data is another pitfall, often leading to degraded performance and unpredictable outputs. 


AI is fueling a power surge - it could also reinvent the grid

Data centers themselves are beginning to evolve as well. Some forward-looking facilities are now being designed with built-in flexibility to contribute back to the grid or operate independently during times of peak stress. These new models, combined with improved efficiency standards and smarter site selection strategies, have the potential to ease some of the pressure being placed on energy systems. Equally important is the role of cross-sector collaboration. As the line between tech and infrastructure continues to blur, it’s critical that policymakers, engineers, utilities, and technology providers work together to shape the standards and policies that will govern this transition. That means not only building new systems, but also rethinking regulatory frameworks and investment strategies to prioritize resiliency, equity, and sustainability. Just as important as technological progress is public understanding. Educating communities about how AI interacts with infrastructure can help build the support needed to scale promising innovations. Transparency around how energy is generated, distributed, and consumed—and how AI fits into that equation—will be crucial to building trust and encouraging participation. ... To be clear, AI is not a silver bullet. It won’t replace the need for new investment or hard policy choices. But it can make our systems smarter, more adaptive, and ultimately more sustainable.


AI vs Technical Debt: Is This A Race to the Bottom?

Critically, AI-generated code can carry security liabilities. One alarming study analyzed code suggested by GitHub Copilot across common security scenarios – the result: roughly 40% of Copilot’s suggestions had vulnerabilities. These included classic mistakes like buffer overflows and SQL injection holes. Why so high? The AI was trained on tons of public code – including insecure code – so it can regurgitate bad practices (like using outdated encryption or ignoring input sanitization) just as easily as good ones. If you blindly accept such output, you’re effectively inviting known bugs into your codebase. It doesn’t help that AI is notoriously bad at certain logical tasks (for example, it struggles with complex math or subtle state logic, so it might write code that looks legit but is wrong in edge cases. ... In many cases, devs aren’t reviewing AI-written code as rigorously as their own, and a common refrain when something breaks is, “It is not my code,” implying they feel less responsible since the AI wrote it. That attitude itself is dangerous, if nobody feels accountable for the AI’s code, it slips through code reviews or testing more easily, leading to more bad deployments. The open-source world is also grappling with an influx of AI-generated “contributions” that maintainers describe as low-quality or even spam. Imagine running an open-source project and suddenly getting dozens of auto-generated pull requests that technically add a feature or fix but are riddled with style issues or bugs.


The Future of Manufacturing: Digital Twin in Action

Process digital twins are often confused with traditional simulation tools, but there is an important distinction. Simulations are typically offline models used to test “what-if” scenarios, verify system behaviour, and optimise processes without impacting live operations. These models are predefined and rely on human input to set parameters and ask the right questions. A digital twin, on the other hand, comes to life when connected to real-time operational data. It reflects current system states, responds to live inputs, and evolves continuously as conditions change. This distinction between static simulation and dynamic digital twin is widely recognised across the industrial sector. While simulation still plays a valuable role in system design and planning, the true power of the digital twin lies in its ability to mirror, interpret, and influence operational performance in real time. ... When AI is added, the digital twin evolves into a learning system. AI algorithms can process vast datasets - far beyond what a human operator can manage - and detect early warning signs of failure. For example, if a transformer begins to exhibit subtle thermal or harmonic irregularities, an AI-enhanced digital twin doesn’t just flag it. It assesses the likelihood of failure, evaluates the potential downstream impact, and proposes mitigation strategies, such as rerouting power or triggering maintenance workflows.


Bridging the Gap: How Hybrid Cloud Is Redefining the Role of the Data Center

Today’s hybrid models involve more than merging public clouds with private data centers. They also involve specialized data center solutions like colocation, edge facilities and bare-metal-as-a-service (BMaaS) offerings. That’s the short version of how hybrid cloud and its relationship to data centers are evolving. ... Fast forward to the present, and the goals surrounding hybrid cloud strategies often look quite different. When businesses choose a hybrid cloud approach today, it’s typically not because of legacy workloads or sunk costs. It’s because they see hybrid architectures as the key to unlocking new opportunities ... The proliferation of edge data centers has also enabled simpler, better-performing and more cost-effective hybrid clouds. The more locations businesses have to choose from when deciding where to place private infrastructure and workloads, the more opportunity they have to optimize performance relative to cost. ... Today’s data centers are no longer just a place to host whatever you can’t run on-prem or in a public cloud. They have evolved into solutions that offer specialized services and capabilities that are critical for building high-performing, cost-effective hybrid clouds – but that aren’t available from public cloud providers, and that would be very costly and complicated for businesses to implement on their own.


AI Agents: Managing Risks In End-To-End Workflow Automation

As CIOs map out their AI strategies, it’s becoming clear that agents will change how they manage their organization’s IT environment and how they deliver services to the rest of the business. With the ability of agents to automate a broad swath of end-to-end business processes—learning and changing as they go—CIOs will have to oversee significant shifts in software development, IT operating models, staffing, and IT governance. ... Human-based checks and balances are vital for validating agent-based outputs and recommendations and, if needed, manually change course should unintended consequences—including hallucinations or other errors—arise. “Agents being wrong is not the same thing as humans being wrong,” says Elliott. “Agents can be really wrong in ways that would get a human fired if they made the same mistake. We need safeguards so that if an agent calls the wrong API, it’s obvious to the person overseeing that task that the response or outcome is unreasonable or doesn’t make sense.” These orchestration and observability layers will be increasingly important as agents are implemented across the business. “As different parts of the organization [automate] manual processes, you can quickly end up with a patchwork-quilt architecture that becomes almost impossible to upgrade or rethink,” says Elliott.

Daily Tech Digest - July 26, 2025


Quote for the day:

"Small daily improvements over time lead to stunning results." -- Robin Sharma


Data Engineering in the Age of AI: Skills To Master Now

Streaming requires a new mindset. You must reason about event time compared to processing time, manage watermarking and windowing and guarantee exactly-once semantics even when things change midstream. These design patterns must be built into your pipelines from the beginning. ... Agentic AI stretches the typical data engineer’s streaming data skill set because it is no longer about a single model running in isolation. Today, we see networks of perception agents, reasoning agents and execution agents working together, each handling tasks and passing insights to the next in real time. If you know only how to schedule batch ETL jobs or deploy an inference server, you’re missing a core skill: how to build high-throughput, low-latency pipelines that keep these agents reliable and responsive in production. ... A single slow or broken stream can cause cascading failures in multiagent systems. Use schema registries, enforce data contracts and apply exactly-once semantics to maintain trust in your streaming infrastructure. ... Communication presents another challenge. Data scientists often discuss “precision” as a metric that data engineers must translate into reality. Implement evaluation scores like factual consistency checks, entity precision comparisons and human-in-the-loop review pipelines.


Anthropic unveils ‘auditing agents’ to test for AI misalignment

Anthropic said the first environment it developed tests an agent’s ability to complete an alignment audit for an intentionally misaligned model. For this test, the researchers brought the investigator agent to the environment and equipped it with similar tools that human teams use. The researchers instructed the agent to identify the root cause of the misalignment and determine the specific behaviors that were misaligned. According to the researchers, the investigator agent successfully found the root cause of the issues 10-13% of the time. Still, this performance improved to 42% “when using a super-agent approach that aggregates findings across multiple investigations.” ... The next step in most alignment audits is typically a behavioral evaluation, which determines whether the model consistently misbehaves in various settings. To test its evaluation agent, the researchers designed 10 models “given system prompt instructions to exhibit a specific behavior, such as excessive deference to the user.” They ran the agent five times per model and saw that the agent correctly finds and flags at least one quirk of the model. However, the agent sometimes failed to identify specific quirks consistently. It had trouble evaluating subtle quirks, such as self-promotion and research-sandbagging, as well as quirks that are difficult to elicit, like the Hardcode Test Cases quirk.


The agentic experience: Is MCP the right tool for your AI future?

As enterprises race to operationalize AI, the challenge isn't only about building and deploying large language models (LLMs), it's also about integrating them seamlessly into existing API ecosystems while maintaining enterprise level security, governance, and compliance. Apigee is committed to lead you in this journey. Apigee streamlines the integration of gen AI agents into applications by bolstering their security, scalability, and governance. While the Model Context Protocol (MCP) has emerged as a de facto method of integrating discrete APIs as tools, the journey of turning your APIs into these agentic tools is broader than a single protocol. This post highlights the critical role of your existing API programs in this evolution and how ... Leveraging MCP services across a network requires specific security constraints. Perhaps you would like to add authentication to your MCP server itself. Once you’ve authenticated calls to the MCP server you may want to authorize access to certain tools depending on the consuming application. You may want to provide first class observability information to track which tools are being used and by whom. Finally, you may want to ensure that whatever downstream APIs your MCP server is supplying tools for also has minimum guarantees of security like already outlined above


AI Innovation: 4 Steps For Enterprises To Gain Competitive Advantage

A skill is a single ability, such as the ability to write a message or analyze a spreadsheet and trigger actions from that analysis. An agent independently handles complex, multi-step processes to produce a measurable outcome. We recently announced an expanded network of Joule Agents to help foster autonomous collaboration across systems and lines of business. This includes out-of-the-box agents for HR, finance, supply chain, and other functions that companies can deploy quickly to help automate critical workflows. AI front-runners, such as Ericsson, Team Liquid, and Cirque du Soleil, also create customized agents that can tackle specific opportunities for process improvement. Now you can build them with Joule Studio, which provides a low-code workspace to help design, orchestrate, and manage custom agents using pre-defined skills, models, and data connections. This can give you the power to extend and tailor your agent network to your exact needs and business context. ... Another way to become an AI front-runner is to tackle fragmented tools and solutions by putting in place an open, interoperable ecosystem. After all, what good is an innovative AI tool if it runs into blockers when it encounters your other first- and third-party solutions? 


Hard lessons from a chaotic transformation

The most difficult part of this transformation wasn’t the technology but getting people to collaborate in new ways, which required a greater focus on stakeholder alignment and change management. So my colleague first established a strong governance structure. A steering committee with leaders from key functions like IT, operations, finance, and merchandising met biweekly to review progress and resolve conflicts. This wasn’t a token committee, but a body with authority. If there were any issues with data exchange between marketing and supply chain, they were addressed and resolved during the meetings. By bringing all stakeholders together, we were also able to identify discrepancies early on. For example, when we discovered a new feature in the inventory system could slow down employee workflows, the operations manager reported it, and we immediately adjusted the rollout plan. Previously, such issues might not have been identified until after the full rollout and subsequent finger-pointing between IT and business departments. The next step was to focus on communication and culture. From previous failed projects, we knew that sending a few emails wasn’t enough, so we tried a more personal approach. We identified influential employees in each department and recruited them as change champions.


Benchmarks for AI in Software Engineering

HumanEval and SWE-bench have taken hold in the ML community, and yet, as indicated above, neither is necessarily reflective of LLMs’ competence in everyday software engineering tasks. I conjecture one of the reasons is the differences in points of view of the two communities! The ML community prefers large-scale, automatically scored benchmarks, as long as there is a “hill climbing” signal to improve LLMs. The business imperative for LLM makers to compete on popular leaderboards can relegate the broader user experience to a secondary concern. On the other hand, the software engineering community needs benchmarks that capture specific product experiences closely. Because curation is expensive, the scale of these benchmarks is sufficient only to get a reasonable offline signal for the decision at hand (A/B testing is always carried out before a launch). Such benchmarks may also require a complex setup to run, and sometimes are not automated in scoring; but these shortcomings can be acceptable considering a smaller scale. For exactly these reasons, these are not useful to the ML community. Much is lost due to these different points of view. It is an interesting question as to how these communities could collaborate to bridge the gap between scale and meaningfulness and create evals that work well for both communities.


Scientists Use Cryptography To Unlock Secrets of Quantum Advantage

When a quantum computer successfully handles a task that would be practically impossible for current computers, this achievement is referred to as quantum advantage. However, this advantage does not apply to all types of problems, which has led scientists to explore the precise conditions under which it can actually be achieved. While earlier research has outlined several conditions that might allow for quantum advantage, it has remained unclear whether those conditions are truly essential. To help clarify this, researchers at Kyoto University launched a study aimed at identifying both the necessary and sufficient conditions for achieving quantum advantage. Their method draws on tools from both quantum computing and cryptography, creating a bridge between two fields that are often viewed separately. ... “We were able to identify the necessary and sufficient conditions for quantum advantage by proving an equivalence between the existence of quantum advantage and the security of certain quantum cryptographic primitives,” says corresponding author Yuki Shirakawa. The results imply that when quantum advantage does not exist, then the security of almost all cryptographic primitives — previously believed to be secure — is broken. Importantly, these primitives are not limited to quantum cryptography but also include widely-used conventional cryptographic primitives as well as post-quantum ones that are rapidly evolving.


It’s time to stop letting our carbon fear kill tech progress

With increasing social and regulatory pressure, reluctance by a company to reveal emissions is ill-received. For example, in Europe the Corporate Sustainability Reporting Directive (CSRD) currently requires large businesses to publish their emissions and other sustainability datapoints. Opaque sustainability reporting undermines environmental commitments and distorts the reference points necessary for net zero progress. How can organisations work toward a low-carbon future when its measurement tools are incomplete or unreliable? The issue is particularly acute regarding Scope 3 emissions. Scope 3 emissions often account for the largest share of a company’s carbon footprint and are those generated indirectly along the supply chain by a company’s vendors, including emissions from technology infrastructure like data centres. ... It sounds grim, but there is some cause for optimism. Most companies are in a better position than they were five years ago and acknowledge that their measurement capabilities have improved. We need to accelerate the momentum of this progress to ensure real action. Earth Overshoot Day is a reminder that climate reporting for the sake of accountability and compliance only covers the basics. The next step is to use emissions data as benchmarks for real-world progress.


Why Supply Chain Resilience Starts with a Common Data Language

Building resilience isn’t just about buying more tech, it’s about making data more trustworthy, shareable, and actionable. That’s where global data standards play a critical role. The most agile supply chains are built on a shared framework for identifying, capturing, and sharing data. When organizations use consistent product and location identifiers, such as GTINs (Global Trade Item Numbers) and GLNs (Global Location Numbers) respectively, they reduce ambiguity, improve traceability, and eliminate the need for manual data reconciliation. With a common data language in place, businesses can cut through the noise of siloed systems and make faster, more confident decisions. ... Companies further along in their digital transformation can also explore advanced data-sharing standards like EPCIS (Electronic Product Code Information Services) or RFID (radio frequency identification) tagging, particularly in high-volume or high-risk environments. These technologies offer even greater visibility at the item level, enhancing traceability and automation. And the benefits of this kind of visibility extend far beyond trade compliance. Companies that adopt global data standards are significantly more agile. In fact, 58% of companies with full standards adoption say they manage supply chain agility “very well” compared to just 14% among those with no plans to adopt standards, studies show.


Opinion: The AI bias problem hasn’t gone away you know

When we build autonomous systems and allow them to make decisions for us, we enter a strange world of ethical limbo. A self-driving car forced to make a similar decision to protect the driver or a pedestrian in a case of a potentially fatal crash will have much more time than a human to make its choice. But what factors influence that choice? ... It’s not just the AI systems shaping the narrative, raising some voices while quieting others. Organisations made up of ordinary flesh-and-blood people are doing it too. Irish cognitive scientist Abeba Birhane, a highly-regarded researcher of human behaviour, social systems and responsible and ethical artificial intelligence was asked to give a keynote recently for the AI for Good Global Summit. According to her own reports on Bluesky, a meeting was requested just hours before presenting her keynote: “I went through an intense negotiation with the organisers (for over an hour) where we went through my slides and had to remove anything that mentions ‘Palestine’ ‘Israel’ and replace ‘genocide’ with ‘war crimes’…and a slide that explains illegal data torrenting by Meta, I also had to remove. In the end, it was either remove everything that names names (Big Tech particularly) and remove logos, or cancel my talk.” 

Daily Tech Digest - July 25, 2025


 Quote for the day:

"Technology changes, but leadership is about clarity, courage, and creating momentum where none exists." -- Inspired by modern digital transformation principles


Why foundational defences against ransomware matter more than the AI threat

The 2025 Cyber Security Breaches Survey paints a concerning picture. According to the study, ransomware attacks doubled between 2024 and 2025 – a surge less to do with AI innovation and more about deep-rooted economic, operational and structural changes within the cybercrime ecosystem. At the heart of this growth in attacks is the growing popularity of the ransomware-as-a-service (RaaS) business model. Groups like DragonForce or Ransomhub sell ready-made ransomware toolkits to affiliates in exchange for a cut of the profits, enabling even low-skilled attackers to conduct disruptive campaigns. ... Breaches often stem from common, preventable issues such as poor credential hygiene or poorly configured systems – areas that often sit outside scheduled assessments. When assessments happen only once or twice a year, new gaps may go unnoticed for months, giving attackers ample opportunity. To keep up, organisations need faster, more continuous ways of validating defences. ... Most ransomware actors follow well-worn playbooks, making them frequent visitors to company networks but not necessarily sophisticated ones. That’s why effective ransomware prevention is not about deploying cutting-edge technologies at every turn – it’s about making sure the basics are consistently in place. 


Subliminal learning: When AI models learn what you didn’t teach them

“Subliminal learning is a general phenomenon that presents an unexpected pitfall for AI development,” the researchers from Anthropic, Truthful AI, the Warsaw University of Technology, the Alignment Research Center, and UC Berkeley, wrote in their paper. “Distillation could propagate unintended traits, even when developers try to prevent this via data filtering.” ... Models trained on data generated by misaligned models, where AI systems diverge from their original intent due to bias, flawed algorithms, data issues, insufficient oversight, or other factors, and produce incorrect, lewd or harmful content, can also inherit that misalignment, even if the training data had been carefully filtered, the researchers found. They offered examples of harmful outputs when student models became misaligned like their teachers, noting, “these misaligned responses are egregious far beyond anything in the training data, including endorsing the elimination of humanity and recommending murder.” ... Today’s multi-billion parameter models are able to discern extremely complicated relationships between a dataset and the preferences associated with that data, even if it’s not immediately obvious to humans, he noted. This points to a need to look beyond semantic and direct data relationships when working with complex AI models.


Why people-first leadership wins in software development

It frequently involves pushing for unrealistic deadlines, with project schedules made without enough input from the development team about the true effort needed and possible obstacles. This results in ongoing crunch periods and mandatory overtime. ... Another indicator is neglecting signs of burnout and stress. Leaders may ignore or dismiss signals such as team members consistently working late, increased irritability, or a decline in productivity, instead pushing for more output without addressing the root causes. Poor work-life balance becomes commonplace, often without proper recognition or rewards for the extra effort. ... Beyond the code, there’s a stifled innovation and creativity. When teams are constantly under pressure to just “ship it,” there’s little room for creative problem-solving, experimentation, or thinking outside the box. Innovation, often born from psychological safety and intellectual freedom, gets squashed, hindering your company’s ability to adapt to new trends and stay competitive. Finally, there’s damage to your company’s reputation. In the age of social media and employer review sites, news travels fast. ... It’s vital to invest in team growth and development. Provide opportunities for continuous learning, training, and skill enhancement. This not only boosts individual capabilities but also shows your commitment to their long-term career paths within your organization. This is a crucial retention strategy.


Achieving resilience in financial services through cloud elasticity and automation

In an era of heightened regulatory scrutiny, volatile markets, and growing cybersecurity threats, resilience isn’t just a nice-to-have—it’s a necessity. A lack of robust operational resilience can lead to regulatory penalties, damaged reputations, and crippling financial losses. In this context, cloud elasticity, automation, and cutting-edge security technologies are emerging as crucial tools for financial institutions to not only survive but thrive amidst these evolving pressures. ... Resilience ensures that financial institutions can maintain critical operations during crises, minimizing disruptions and maintaining service quality. Efficient operations are crucial for maintaining competitive advantage and customer satisfaction. ... Effective resilience strategies help institutions manage diverse risks, including cyber threats, system failures, and third-party vulnerabilities. The complexity of interconnected systems and the rapid pace of technological advancement add layers of risk that are difficult to manage. ... Financial institutions are particularly susceptible to risks such as system failures, cyberattacks, and third-party vulnerabilities. ... As financial institutions navigate a landscape marked by heightened risk, evolving regulations, and increasing customer expectations, operational resilience has become a defining imperative.


Digital attack surfaces expand as key exposures & risks double

Among OT systems, the average number of exposed ports per organisation rose by 35%, with Modbus (port 502) identified as the most commonly exposed, posing risks of unauthorised commands and potential shutdowns of key devices. The exposure of Unitronics port 20256 surged by 160%. The report cites cases where attackers, such as the group "CyberAv3ngers," targeted industrial control systems during conflicts, exploiting weak or default passwords. ... The number of vulnerabilities identified on public-facing assets more than doubled, rising from three per organisation in late 2024 to seven in early 2025. Critical vulnerabilities dating as far back as 2006 and 2008 still persist on unpatched systems, with proof-of-concept code readily available online, making exploitation accessible even to attackers with limited expertise. The report also references the continued threat posed by ransomware groups who exploit such weaknesses in internet-facing devices. ... Incidents involving exposed access keys, including cloud and API keys, doubled from late 2024 to early 2025. Exposed credentials can enable threat actors to enter environments as legitimate users, bypassing perimeter defenses. The report highlights that most exposures result from accidental code pushes to public repositories or leaks on criminal forums.


How Elicitation in MCP Brings Human-in-the-Loop to AI Tools

Elicitation represents more than an incremental protocol update. It marks a shift toward collaborative AI workflows, where the system and human co-discover missing context rather than expecting all details upfront. Python developers building MCP tools can now focus on core logic and delegate parameter gathering to the protocol itself, allowing for a more streamlined approach. Clients declare an elicitation capability during initialization, so servers know they may elicit input at any time. That standardized interchange liberates developers from generating custom UIs or creating ad hoc prompts, ensuring coherent behaviour across diverse MCP clients. ... Elicitation transforms human-in-the-loop (HITL) workflows from an afterthought to a core capability. Traditional AI systems often struggle with scenarios that require human judgment, approval, or additional context. Developers had to build custom solutions for each case, leading to inconsistent experiences and significant development overhead. With elicitation, HITL patterns become natural extensions of tool functionality. A database migration tool can request confirmation before making irreversible changes. A document generation system can gather style preferences and content requirements through guided interactions. An incident response tool can collect severity assessments and stakeholder information as part of its workflow.


Cognizant Agents Gave Hackers Passwords, Clorox Says in Lawsuit

“Cognizant was not duped by any elaborate ploy or sophisticated hacking techniques,” the company says in its partially redacted 19-page complaint. “The cybercriminal just called the Cognizant Service Desk, asked for credentials to access Clorox’s network, and Cognizant handed the credentials right over. Cognizant is on tape handing over the keys to Clorox’s corporate network to the cybercriminal – no authentication questions asked.” ... The threat actors made multiple calls to the Cognizant help desk, essentially asking for new passwords and getting them without any effort to verify them, Clorox wrote. They then used those new credentials to gain access to the corporate network, launching a “debilitating” attack that “paralyzed Clorox’s corporate network and crippled business operations. And to make matters worse, when Clorox called on Cognizant to provide incident response and disaster recovery support services, Cognizant botched its response and compounded the damage it had already caused.” In statement to media outlets, a Cognizant spokesperson said it was “shocking that a corporation the size of Clorox had such an inept internal cybersecurity system to mitigate this attack.” While Clorox is placing the blame on Cognizant, “the reality is that Clorox hired Cognizant for a narrow scope of help desk services which Cognizant reasonably performed. Cognizant did not manage cybersecurity for Clorox,” the spokesperson said.


Digital sovereignty becomes a matter of resilience for Europe

Open-source and decentralized technologies are essential to advancing Europe’s strategic autonomy. Across cybersecurity, communications, and foundational AI, we’re seeing growing support for open-source infrastructure, now treated with the same strategic importance once reserved for energy, water and transportation. The long-term goal is becoming clear: not to sever global ties, but to reduce dependencies by building credible, European-owned alternatives to foreign-dominated systems. Open-source is a cornerstone of this effort. It empowers European developers and companies to innovate quickly and transparently, with full visibility and control, essential for trust and sovereignty. Decentralized systems complement this by increasing resilience against cyber threats, monopolistic practices and commercial overreach by “big tech”. While public investment is important, what Europe needs most is a more “risk-on” tech environment, one that rewards ambition, accelerated growth and enables European players to scale and compete globally. Strategic autonomy won’t be achieved by funding alone, but by creating the right innovation and investment climate for open technologies to thrive. Many sovereign platforms emphasize end-to-end encryption, data residency, and open standards. Are these enough to ensure trust, or is more needed to truly protect digital independence?



Building better platforms with continuous discovery

Platform teams are often judged by stability, not creativity. Balancing discovery with uptime and reliability takes effort. So does breaking out of the “tickets and delivery” cycle to explore problems upstream. But the teams that manage it? They build platforms that people want to use, not just have to use. Start by blocking time for discovery in your sprint planning, measuring both adoption and friction metrics, and most importantly, talking to your users periodically rather than waiting for them to come to you with problems. Cultural shifts like this take time because you're not just changing the process; you're changing what people believe is acceptable or expected. That kind of change doesn't happen just because leadership says it should, or because a manager adds a new agenda to planning meetings. It sticks when ICs feel inspired and safe enough to work differently and when managers back that up with support and consistency. Sometimes a C-suite champion helps set the tone, but day-to-day, it's middle managers and senior ICs who do the slow, steady work of normalizing new behavior. You need repeated proof that it's okay to pause and ask why, to explore, to admit uncertainty. Without that psychological safety, people just go back to what they know: deliverables and deadlines. 


AI-enabled software development: Risk of skill erosion or catalyst for growth?

We need to reframe AI not as a rival, but as a tool—one that has its own pros and cons and can extend human capability, not devalue it. This shift in perspective opens the door to a broader understanding of what it means to be a skilled engineer today. Using AI doesn’t eliminate the need for expertise—it changes the nature of that expertise. Classical programming, once central to the developer’s identity, becomes one part of a larger repertoire. In its place emerge new competencies: critical evaluation, architectural reasoning, prompt literacy, source skepticism, interpretative judgment. These are not hard skills, but meta-cognitive abilities—skills that require us to think about how we think. We’re not losing cognitive effort—we’re relocating it. This transformation mirrors earlier technological shifts. ... Some of the early adopters of AI enablement are already looking ahead—not just at the savings from replacing employees with AI, but at the additional gains those savings might unlock. With strategic investment and redesigned expectations, AI can become a growth driver—not just a cost-cutting tool. But upskilling alone isn’t enough. As organizations embed AI deeper into the development workflow, they must also confront the technical risks that come with automation. The promise of increased productivity can be undermined if these tools are applied without adequate context, oversight, or infrastructure.

Daily Tech Digest - July 20, 2025


Quote for the day:

“Wisdom equals knowledge plus courage. You have to not only know what to do and when to do it, but you have to also be brave enough to follow through.” -- Jarod Kintz


Lean Agents: The Agile Workforce of Agentic AI

Organizations are tired of gold‑plated mega systems that promise everything and deliver chaos. Enter frameworks like AutoGen and LangGraph, alongside protocols such as MCP; all enabling Lean Agents to be spun up on-demand, plug into APIs, execute a defined task, then quietly retire. This is a radical departure from heavyweight models that stay online indefinitely, consuming compute cycles, budget, and attention. ... Lean Agents are purpose-built AI workers; minimal in design, maximally efficient in function. Think of them as stateless or scoped-memory micro-agents: they wake when triggered, perform a discrete task like summarizing an RFP clause or flagging anomalies in payments and then gracefully exit, freeing resources and eliminating runtime drag. Lean Agents are to AI what Lambda functions are to code: ephemeral, single-purpose, and cloud-native. They may hold just enough context to operate reliably but otherwise avoid persistent state that bloats memory and complicates governance. ... From technology standpoint, combined with the emerging Model‑Context Protocol (MCP) give engineering teams the scaffolding to create discoverable, policy‑aware agent meshes. Lean Agents transform AI from a monolithic “brain in the cloud” into an elastic workforce that can be budgeted, secured, and reasoned about like any other microservice.


Cloud Repatriation Is Harder Than You Think

Repatriation is not simply a reverse lift-and-shift process. Workloads that have developed in the cloud often have specific architectural dependencies that are not present in on-premises environments. These dependencies can include managed services like identity providers, autoscaling groups, proprietary storage solutions, and serverless components. As a result, moving a workload back on-premises typically requires substantial refactoring and a thorough risk assessment. Untangling these complex layers is more than just a migration; it represents a structural transformation. If the service expectations are not met, repatriated applications may experience poor performance or even fail completely. ... You cannot migrate what you cannot see. Accurate workload planning relies on complete visibility, which includes not only documented assets but also shadow infrastructure, dynamic service relationships, and internal east-west traffic flows. Static tools such as CMDBs or Visio diagrams often fall out of date quickly and fail to capture real-time behavior. These gaps create blind spots during the repatriation process. Application dependency mapping addresses this issue by illustrating how systems truly interact at both the network and application layers. Without this mapping, teams risk disrupting critical connections that may not be evident on paper.


AI Agents Are Creating a New Security Nightmare for Enterprises and Startups

The agentic AI landscape is still in its nascent stages, making it the opportune moment for engineering leaders to establish robust foundational infrastructure. While the technology is rapidly evolving, the core patterns for governance are familiar: Proxies, gateways, policies, and monitoring. Organizations should begin by gaining visibility into where agents are already running autonomously — chatbots, data summarizers, background jobs — and add basic logging. Even simple logs like “Agent X called API Y” are better than nothing. Routing agent traffic through existing proxies or gateways in a reverse mode can eliminate immediate blind spots. Implementing hard limits on timeouts, max retries, and API budgets can prevent runaway costs. While commercial AI gateway solutions are emerging, such as Lunar.dev, teams can start by repurposing existing tools like Envoy, HAProxy, or simple wrappers around LLM APIs to control and observe traffic. Some teams have built minimal “LLM proxies” in days, adding logging, kill switches, and rate limits. Concurrently, defining organization-wide AI policies — such as restricting access to sensitive data or requiring human review for regulated outputs — is crucial, with these policies enforced through the gateway and developer training.


The Evolution of Software Testing in 2025: A Comprehensive Analysis

The testing community has evolved beyond the conventional shift-left and shift-right approaches to embrace what industry leaders term "shift-smart" testing. This holistic strategy recognizes that quality assurance must be embedded throughout the entire software development lifecycle, from initial design concepts through production monitoring and beyond. While shift-left testing continues to emphasize early validation during development phases, shift-right testing has gained equal prominence through its focus on observability, chaos engineering, and real-time production testing. ... Modern testing platforms now provide insights into how testing outcomes relate to user churn rates, release delays, and net promoter scores, enabling organizations to understand the direct business impact of their quality assurance investments. This data-driven approach transforms testing from a technical activity into a business-critical function with measurable value.Artificial intelligence platforms are revolutionizing test prioritization by predicting where failures are most likely to occur, allowing testing teams to focus their efforts on the highest-risk areas. ... Modern testers are increasingly taking on roles as quality coaches, working collaboratively with development teams to improve test design and ensure comprehensive coverage aligned with product vision. 


7 lessons I learned after switching from Google Drive to a home NAS

One of the first things I realized was that a NAS is only as fast as the network it’s sitting on. Even though my NAS had decent specs, file transfers felt sluggish over Wi-Fi. The new drives weren’t at fault, but my old router was proving to be a bottleneck. Once I wired things up and upgraded my router, the difference was night and day. Large files opened like they were local. So, if you’re expecting killer performance, make sure to look out for the network box, because it perhaps matters just as much  ... There was a random blackout at my place, and until then, I hadn’t hooked my NAS to a power backup system. As a result, the NAS shut off mid-transfer without warning. I couldn’t tell if I had just lost a bunch of files or if the hard drives had been damaged too — and that was a fair bit scary. I couldn’t let this happen again, so I decided to connect the NAS to an uninterruptible power supply unit (UPS).  ... I assumed that once I uploaded my files to Google Drive, they were safe. Google would do the tiring job of syncing, duplicating, and mirroring on some faraway data center. But in a self-hosted environment, you are the one responsible for all that. I had to put safety nets in place for possible instances where a drive fails or the NAS dies. My current strategy involves keeping some archived files on a portable SSD, a few important folders synced to the cloud, and some everyday folders on my laptop set up to sync two-way with my NAS.


5 key questions your developers should be asking about MCP

Despite all the hype about MCP, here’s the straight truth: It’s not a massive technical leap. MCP essentially “wraps” existing APIs in a way that’s understandable to large language models (LLMs). Sure, a lot of services already have an OpenAPI spec that models can use. For small or personal projects, the objection that MCP “isn’t that big a deal” is pretty fair. ... Remote deployment obviously addresses the scaling but opens up a can of worms around transport complexity. The original HTTP+SSE approach was replaced by a March 2025 streamable HTTP update, which tries to reduce complexity by putting everything through a single /messages endpoint. Even so, this isn’t really needed for most companies that are likely to build MCP servers. But here’s the thing: A few months later, support is spotty at best. Some clients still expect the old HTTP+SSE setup, while others work with the new approach — so, if you’re deploying today, you’re probably going to support both. Protocol detection and dual transport support are a must. ... However, the biggest security consideration with MCP is around tool execution itself. Many tools need broad permissions to be useful, which means sweeping scope design is inevitable. Even without a heavy-handed approach, your MCP server may access sensitive data or perform privileged operations


Firmware Vulnerabilities Continue to Plague Supply Chain

"The major problem is that the device market is highly competitive and the vendors [are] competing not only to the time-to-market, but also for the pricing advantages," Matrosov says. "In many instances, some device manufacturers have considered security as an unnecessary additional expense." The complexity of the supply chain is not the only challenge for the developers of firmware and motherboards, says Martin Smolár, a malware researcher with ESET. The complexity of the code is also a major issue, he says. "Few people realize that UEFI firmware is comparable in size and complexity to operating systems — it literally consists of millions of lines of code," he says. ... One practice that hampers security: Vendors will often try to only distribute security fixes under a non-disclosure agreement, leaving many laptop OEMs unaware of potential vulnerabilities in their code. That's the exact situation that left Gigabyte's motherboards with a vulnerable firmware version. Firmware vendor AMI fixed the issues years ago, but the issues have still not propagated out to all the motherboard OEMs. ... Yet, because firmware is always evolving as better and more modern hardware is integrated into motherboards, the toolset also need to be modernized, Cobalt's Ollmann says.


Beyond Pilots: Reinventing Enterprise Operating Models with AI

Historically, AI models required vast volumes of clean, labeled data, making insights slow and costly. Large language models (LLMs) have upended this model, pre-trained on billions of data points and able to synthesize organizational knowledge, market signals, and past decisions to support complex, high-stakes judgment. AI is becoming a powerful engine for revenue generation through hyper-personalization of products and services, dynamic pricing strategies that react to real-time market conditions, and the creation of entirely new service offerings. More significantly, AI is evolving from completing predefined tasks to actively co-creating superior customer experiences through sophisticated conversational commerce platforms and intelligent virtual agents that understand context, nuance, and intent in ways that dramatically enhance engagement and satisfaction. ... In R&D and product development, AI is revolutionizing operating models by enabling faster go-to-market cycles. AI can simulate countless design alternatives, optimize complex supply chains in real time, and co-develop product features based on deep analysis of customer feedback and market trends. These systems can draw from historical R&D successes and failures across industries, accelerating innovation by applying lessons learned from diverse contexts and domains.


Alternative clouds are on the rise

Alt clouds, in their various forms, represent a departure from the “one size fits all” mentality that initially propelled the public cloud explosion. These alternatives to the Big Three prioritize specificity, specialization, and often offer an advantage through locality, control, or workload focus. Private cloud, epitomized by offerings from VMware and others, has found renewed relevance in a world grappling with escalating cloud bills, data sovereignty requirements, and unpredictable performance from shared infrastructure. The old narrative that “everything will run in the public cloud eventually” is being steadily undermined as organizations rediscover the value of dedicated infrastructure, either on-premises or in hosted environments that behave, in almost every respect, like cloud-native services. ... What begins as cost optimization or risk mitigation can quickly become an administrative burden, soaking up engineering time and escalating management costs. Enterprises embracing heterogeneity have no choice but to invest in architects and engineers who are familiar not only with AWS, Azure, or Google, but also with VMware, CoreWeave, a sovereign European platform, or a local MSP’s dashboard. 


Making security and development co-owners of DevSecOps

In my view, DevSecOps should be structured as a shared responsibility model, with ownership but no silos. Security teams must lead from a governance and risk perspective, defining the strategy, standards, and controls. However, true success happens when development teams take ownership of implementing those controls as part of their normal workflow. In my career, especially while leading security operations across highly regulated industries, including finance, telecom, and energy, I’ve found this dual-ownership model most effective. ... However, automation without context becomes dangerous, especially closer to deployment. I’ve led SOC teams that had to intervene because automated security policies blocked deployments over non-exploitable vulnerabilities in third-party libraries. That’s a classic example where automation caused friction without adding value. So the balance is about maturity: automate where findings are high-confidence and easily fixable, but maintain oversight in phases where risk context matters, like release gates, production changes, or threat hunting. ... Tools are often dropped into pipelines without tuning or context, overwhelming developers with irrelevant findings. The result? Fatigue, resistance, and workarounds.

Daily Tech Digest - July 08, 2025


Quote for the day:

“If you really want the key to success, start by doing the opposite of what everyone else is doing.” -- Brad Szollose


MCP Vulnerability Exposes the AI Untrusted Code Crisis

Most organizations have rigorous approval processes before allowing arbitrary code to run in their environments whether from open source projects or vendor solutions. Yet with this new wave of tools, we’re simultaneously allowing thousands of employees to constantly update codebases with arbitrary, untrusted AI-generated code or wiring said codebases and applications to mechanisms that can alter or modify their behavior. This isn’t about stopping the use of AI coding agents or sacrificing the massive productivity gains they provide. Instead, we should standardize better ways that allow us to run untrusted code across our software development pipelines. ... As AI development tools gain adoption across enterprises, there is a new class of systems to support them that can execute code on behalf of developers. This includes AI code assistants generating and running code snippets, MCP servers providing AI systems access to local tools and data, automated testing tools executing AI-generated test cases and development agents performing complex multistep operations. Each of these represents a potential code execution pathway that often bypasses traditional security controls. The risk isn’t just that AI-generated code can be inadvertently malicious; it’s that these new systems also create pathways for untrusted code execution.


Is English the next programming language? JetBrains’ CEO says no

JetBrains does need to contend with the fact that many of its users are being threatened by AI replacing them, even if he notes that job displacement isn’t happening at anywhere near the rate some have suggested. Products, languages and IT infrastructure can indeed be made redundant too. We may also add that many layoff rounds use AI as an excuse to make cuts that are simply financially motivated. Still, we need to appreciate that AI is indeed changing the overall landscape. Tasks can be automated, and AI is eagerly shoveling up the developer code that’s freely available online. What about Kotlin specifically?  ... “Here’s my vision. I think programming languages will evolve a lot. I admit that you may not need high level programming languages in the classical sense anymore, but the solution still wouldn’t be English.” Skrygan envisions a middle ground between Kotlin and natural language. Currently, the closest approximation is Kotlin DSL. It’s a design doc that can be compiled as code. Ultimately, like anything digital, it converts into binary at the lowest level. The JetBrains CEO highlights how this is merely a repeat of what we’ve already seen: “People were writing in bytecode and assembler 40 years ago. Now, nobody cares about it anymore. It’s secondary.”

Privacy is blockchain’s missing link—and America’s opportunity to lead

We are at an inflection point. On one hand, blockchain has evolved from an experimental idea into a foundational layer for decentralized finance (DeFi), gaming, cross-border payments, and digital identity. On the other, the absence of privacy threatens to stall its momentum. Without privacy guarantees, Web3 won’t scale into a secure, inclusive internet economy—it will remain a risky, self-surveilling shadow of its potential. It’s not just user safety at stake. Institutional adoption, long seen as the tipping point for crypto’s maturation, is lagging in part because privacy solutions are underdeveloped. Financial institutions and enterprises cannot embrace systems that force them to reveal business-sensitive transactions to competitors and regulators alike. Privacy is not the enemy of compliance; it’s a prerequisite for serious engagement. ... First, policymakers must move past the false binary of privacy versus compliance. These are not mutually exclusive goals. Clear guidelines that embrace advanced cryptography, establish safe harbors for privacy-preserving innovation, and differentiate between consumer protection and surveillance will enable the next generation of secure digital finance. Second, industry leaders need to elevate privacy to the level of consensus mechanisms, scalability, and user experience. 


How scientists are trying to use AI to unlock the human mind

In one of the studies, researchers transformed a large language model into what they refer to as a “foundation model of human cognition.” Out of the box, large language models aren’t great at mimicking human behavior—they behave logically in settings where humans abandon reason, such as casinos. So the researchers fine-tuned Llama 3.1, one of Meta’s open-source LLMs, on data from a range of 160 psychology experiments, which involved tasks like choosing from a set of “slot machines” to get the maximum payout or remembering sequences of letters. ... Accurate predictions of how humans respond in psychology experiments are valuable in and of themselves: For example, scientists could use Centaur to pilot their experiments on a computer before recruiting, and paying, human participants. In their paper, however, the researchers propose that Centaur could be more than just a prediction machine. ... The second of the two Nature studies focuses on minuscule neural networks—some containing only a single neuron—that nevertheless can predict behavior in mice, rats, monkeys, and even humans. Because the networks are so small, it’s possible to track the activity of each individual neuron and use that data to figure out how the network is producing its behavioral predictions. 


New Study Reveals True AI Capabilities And Job Replacement Risk

For business leaders, this framework offers something really valuable: a reality check that cuts through vendor marketing speak. When a sales representative promises their AI solution will "revolutionize your operations," you can now ask pointed questions about which capability levels their system actually achieves and in which specific domains. The gap analysis between current AI capabilities and the requirements of specific business tasks becomes clearer when standardized benchmarks are in place. Consider customer service, where companies are deploying AI chatbots with the enthusiasm of gold rush prospectors. The OECD framework suggests that while AI can handle structured interactions reasonably well, anything requiring genuine social intelligence, nuanced problem-solving, or creative thinking quickly exposes current limitations. This doesn't mean AI isn't useful in customer service, but it helps set realistic expectations about what human oversight will still be necessary. It's the difference between using AI as a sophisticated tool versus expecting it to be a replacement employee. One approach leads to productivity gains; the other leads to customer complaints and public relations disasters.


Why EU Policy Must Catch Up to the Neurotechnology Boom

After conducting a comprehensive analysis of nearly 300 neurotechnology companies worldwide, the Center for Future Generations discovered a surprising trend: among firms fully dedicated to neurotech, consumer firms now outnumber medical ones, making up 60% of the global neurotechnology landscape. And they're proliferating at an unprecedented rate—more than quadrupling in the past decade compared to the previous 25 years. ... EEG, the technology at the heart of this revolution, has been around since the 1920s. It's crude and can't read individual thoughts, but it can detect patterns of brain activity related to focus, fatigue, and even emotional states. And when coupled with artificial intelligence and other personal data—like location, buying behaviors, and biometrics—these patterns can reveal far more about us than we might imagine. ... As this technology moves into the mainstream, the potential for misuse becomes profound. Imagine pre-election advertising that adapts its messaging based on your emotional reaction. Imagine disinformation campaigns tailored to your subconscious fears, measured directly from your brain. Imagine authoritarian governments monitoring emotional responses to propaganda, searching for dissent in citizens' brainwaves. This marks a critical moment for European policymakers.


Enterprises Are Prioritizing Generative AI Spending in 2025

The report, "Generative AI Adoption Index," highlights how organizations are moving gen AI from experimentation to full-scale implementation and offers practical strategies to create business value. CEOs, CTOs and CIOs currently lead most gen AI innovation, but leadership structures are evolving to include specialized AI roles, such as CAIOs, at the highest levels of organizations. ... Along with CAIOs, a thoughtful change management strategy will be critical. The ideal strategy should address operating model changes, data management practices and talent pipelines. Today, just 14% of organizations have a change management strategy, but this will increase to 76% by end of 2026, highlighting a growing recognition of the need for structured adaptation. But a sizable proportion of organizations may still struggle to keep pace with AI-driven transformation, with one in four organizations still lacking a strategy in 2026. ... Third-party vendors are becoming key enablers of gen AI transformation across organizations globally. From supplying outsourced talent to offering services such as cloud computing and storage, these vendors help bridge critical technology and talent gaps. Effective gen AI deployment will depend on strong collaboration between external experts and internal teams. 


AI’s rise demands more from the UK data center market

The growing demand for digital infrastructure, fueled by the surge in AI, has intensified competition for suitable land to build data centers. This scarcity (particularly in London), coupled with the rise in construction and operational costs, makes it difficult to establish data centers in the most efficient and cost-effective manner. Similarly, an over-reliance on well-established technology clusters (such as West London) can increase resource restraints and vulnerability to power outages and downtime. With UK policy frameworks around data centers still evolving, discussions are ongoing around security, energy consumption, and specific regulatory needs. ... Similarly, traditional methods demand a high level of energy consumption to keep AI chips operating at optimal temperatures. Given the energy-intensive nature of air cooling and it being unlikely to keep up with cooling demands, the data center industry is reaching a critical juncture: stifle the capabilities of AI technologies by not integrating effective thermal management, or investing in a more effective, future-thinking approach to cooling? ... The UK’s data center expansion is not just a scaling project, it is a rethinking of what data centers and associated cooling infrastructures must become. 


Why CISOs are making the SASE switch: Fewer vendors, smarter security, better AI guardrails

“SASE is an existential threat to all appliance-based network security companies,” Shlomo Kramer, Cato’s CEO, told VentureBeat. “The vast majority of the market is going to be refactored from appliances to cloud service, which means SASE [is going to be] 80% of the market.” A fundamental architectural transformation is driving that shift. SASE converges traditionally siloed networking and security functions into a single, cloud-native service edge. It combines SD-WAN with critical security capabilities, including secure web gateway (SWG), cloud access security broker (CASB) and ZTNA to enforce policy and protect data regardless of where users or workloads reside. ... The SASE consolidation wave reveals how enterprises are fundamentally rethinking security architecture. With AI attacks exploiting integration gaps instantly, single-vendor SASE has become essential for both protection and operational efficiency. The reasoning is straightforward. Every vendor handoff creates vulnerability. Each integration adds latency. Security leaders know that unified platforms can help eliminate these risks while enabling business velocity. CISOs are increasingly demanding a single console, a single agent and unified policies. 


CISOs urged to fix API risk before regulation forces their hand

The widespread use of APIs to support mobile apps, cloud services, and partner integrations means that the attack surface has changed. But the security practices often haven’t. APIs today handle everything from identity claims and cardholder data to health and account information. Yet in many organizations, they remain outside the scope of standard security programs. ... Oppenheim added that meaningful oversight at the board level doesn’t require technical fluency. “Board-level metrics in such a technically complex space can be difficult to surface meaningfully, but there are still effective ways to guide oversight and investment. Directors should ask which recognised standards (e.g. FAPI) have been adopted or are in the roadmap, and whether the organization has applied a maturity model or framework to benchmark its current posture and track improvements over time.” ... So far, the biggest improvements in API security have come either through direct regulation or industry-led mandates. But pressure is building elsewhere. “Again, organizational size plays a key role,” said Oppenheim. “Larger firms and infrastructure providers are already moving ahead voluntarily – not just in banking, but in payments and identity platforms – because they see strong API security as a necessary foundation for scale and trust.”

Daily Tech Digest - May 29, 2025


Quote for the day:

"All progress takes place outside the comfort zone." -- Michael John Bobak


What Are Deepfakes? Everything to Know About These AI Image and Video Forgeries

Deepfakes rely on deep learning, a branch of AI that mimics how humans recognize patterns. These AI models analyze thousands of images and videos of a person, learning their facial expressions, movements and voice patterns. Then, using generative adversarial networks, AI creates a realistic simulation of that person in new content. GANs are made up of two neural networks where one creates content (the generator), and the other tries to spot if it's fake (the discriminator). The number of images or frames needed to create a convincing deepfake depends on the quality and length of the final output. For a single deepfake image, as few as five to 10 clear photos of the person's face may be enough. ... While tech-savvy people might be more vigilant about spotting deepfakes, regular folks need to be more cautious. I asked John Sohrawardi, a computing and information sciences Ph.D. student leading the DeFake Project, about common ways to recognize a deepfake. He advised people to look at the mouth to see if the teeth are garbled." Is the video more blurry around the mouth? Does it feel like they're talking about something very exciting but act monotonous? That's one of the giveaways of more lazy deepfakes." ... "Too often, the focus is on how to protect yourself, but we need to shift the conversation to the responsibility of those who create and distribute harmful content," Dorota Mani tells CNET


Beyond GenAI: Why Agentic AI Was the Real Conversation at RSA 2025

Contrary to GenAI, that primarily focuses on the divergence of information, generating new content based on specific instructions, SynthAI developments emphasize the convergence of information, presenting less but more pertinent content by synthesizing available data. SynthAI will enhance the quality and speed of decision-making, potentially making decisions autonomously. The most evident application lies in summarizing large volumes of information that humans would be unable to thoroughly examine and comprehend independently. SynthAI’s true value will be in aiding humans to make more informed decisions efficiently. ... Trust in AI also needs to evolve. This isn’t a surprise as AI, like all technologies, is going through the hype cycle and in the same way that cloud and automation suffered with issues around trust in the early stages of maturity, so AI is following a very similar pattern. It will be some time before trust and confidence are in balance with AI. ... Agentic AI encompasses tools that can understand objectives, make decisions, and act. These tools streamline processes, automate tasks, and provide intelligent insights to aid in quick decision making. In a use case involving repetitive processes, take a call center as an example, agentic AI can have significant value. 


The Privacy Challenges of Emerging Personalized AI Services

The nature of the search business will change substantially in this world of personalized AI services. It will evolve from a service for end users to an input into an AI service for end users. In particular, search will become a component of chatbots and AI agents, rather than the stand-alone service it is today. This merger has already happened to some degree. OpenAI has offered a search service as part of its ChatGPT deployment since last October. Google launched AI Overview in May of last year. AI Overview returns a summary of its search results generated by Google’s Gemini AI model at the top of its search results. When a user asks a question to ChatGPT, the chatbot will sometimes search the internet and provide a summary of its search results in its answer. ... The best way forward would not be to invent a sector-specific privacy regime for AI services, although this could be made to work in the same way that the US has chosen to put financial, educational, and health information under the control of dedicated industry privacy regulators. It might be a good approach if policymakers were also willing to establish a digital regulator for advanced AI chatbots and AI agents, which will be at the heart of an emerging AI services industry. But that prospect seems remote in today’s political climate, which seems to prioritize untrammeled innovation over protective regulation.


What CISOs can learn from the frontlines of fintech cybersecurity

For Shetty, the idea that innovation competes with security is a false choice. “They go hand in hand,” she says. User trust is central to her approach. “That’s the most valuable currency,” she explains. Lose it, and it’s hard to get back. That’s why transparency, privacy, and security are built into every step of her team’s work, not added at the end. ... Supply chain attacks remain one of her biggest concerns. Many organizations still assume they’re too small to be a target. That’s a dangerous mindset. Shetty points to many recent examples where attackers reached big companies by going through smaller suppliers. “It’s not enough to monitor your vendors. You also have to hold them accountable,” she says. Her team helps clients assess vendor cyber hygiene and risk scores, and encourages them to consider that when choosing suppliers. “It’s about making smart choices early, not reacting after the fact.” Vendor security needs to be an active process. Static questionnaires and one-off audits are not enough. “You need continuous monitoring. Your supply chain isn’t standing still, and neither are attackers.” ... The speed of change is what worries her most. Threats evolve quickly. The amount of data to protect grows every day. At the same time, regulators and customers expect high standards, and they should.


Tech optimism collides with public skepticism over FRT, AI in policing

Despite the growing alarm, some tech executives like OpenAI’s Sam Altman have recently reversed course, downplaying the need for regulation after previously warning of AI’s risks. This inconsistency, coupled with massive federal contracts and opaque deployment practices, erodes public trust in both corporate actors and government regulators. What’s striking is how bipartisan the concern has become. According to the Pew survey, only 17 percent of Americans believe AI will have a positive impact on the U.S. over the next two decades, while 51 percent express more concern than excitement about its expanding role. These numbers represent a significant shift from earlier years and a rare area of consensus between liberal and conservative constituencies. ... Bias in law enforcement AI systems is not simply a product of technical error; it reflects systemic underrepresentation and skewed priorities in AI design. According to the Pew survey, only 44 percent of AI experts believe women’s perspectives are adequately accounted for in AI development. The numbers drop even further for racial and ethnic minorities. Just 27 percent and 25 percent say the perspectives of Black and Hispanic communities, respectively, are well represented in AI systems.


6 rising malware trends every security pro should know

Infostealers steal browser cookies, VPN credentials, MFA (multi-factor authentication) tokens, crypto wallet data, and more. Cybercriminals sell the data that infostealers grab through dark web markets, giving attackers easy access to corporate systems. “This shift commoditizes initial access, enabling nation-state goals through simple transactions rather than complex attacks,” says Ben McCarthy, lead cyber security engineer at Immersive. ... Threat actors are systematically compromising the software supply chain by embedding malicious code within legitimate development tools, libraries, and frameworks that organizations use to build applications. “These supply chain attacks exploit the trust between developers and package repositories,” Immersive’s McCarthy tells CSO. “Malicious packages often mimic legitimate ones while running harmful code, evading standard code reviews.” ... “There’s been a notable uptick in the use of cloud-based services and remote management platforms as part of ransomware toolchains,” says Jamie Moles, senior technical marketing manager at network detection and response provider ExtraHop. “This aligns with a broader trend: Rather than relying solely on traditional malware payloads, adversaries are increasingly shifting toward abusing trusted platforms and ‘living-off-the-land’ techniques.”


How Constructive Criticism Can Improve IT Team Performance

Constructive criticism can be an excellent instrument for growth, both individually and on the team level, says Edward Tian, CEO of AI detection service provider GPTZero. "Many times, and with IT teams in particular, work is very independent," he observes in an email interview. "IT workers may not frequently collaborate with one another or get input on what they're doing," Tian states. ... When using constructive criticism, take an approach that focuses on seeking improvement with the poor result, Chowning advises. Meanwhile, use empathy to solicit ideas on how to improve on a poor result. She adds that it's important to ask questions, listen, seek to understand, acknowledge any difficulties or constraints, and solicit improvement ideas. ... With any IT team there are two key aspects of constructive criticism: creating the expectation and opportunity for performance improvement, and -- often overlooked -- instilling recognition in the team that performance is monitored and has implications, Chowning says. ... The biggest mistake IT leaders make is treating feedback as a one-way directive rather than a dynamic conversation, Avelange observes. "Too many IT leaders still operate in a command-and-control mindset, dictating what needs to change rather than co-creating solutions with their teams."


How AI will transform your Windows web browser

Google isn’t the only one sticking AI everywhere imaginable, of course. Microsoft Edge already has plenty of AI integration — including a Copilot icon on the toolbar. Click that, and you’ll get a Copilot sidebar where you can talk about the current web page. But the integration runs deeper than most people think, with more coming yet: Copilot in Edge now has access to Copilot Vision, which means you can share your current web view with the AI model and chat about what you see with your voice. This is already here — today. Following Microsoft’s Build 2025 developers’ conference, the company is starting to test a Copilot box right on Edge’s New Tab page. Rather than a traditional Bing search box in that area, you’ll soon see a Copilot prompt box so you can ask a question or perform a search with Copilot — not Bing. It looks like Microsoft is calling this “Copilot Mode” for Edge. And it’s not just a transformed New Tab page complete with suggested prompts and a Copilot box, either: Microsoft is also experimenting with “Context Clues,” which will let Copilot take into account your browser history and preferences when answering questions. It’s worth noting that Copilot Mode is an optional and experimental feature. ... Even the less AI-obsessed browsers of Mozilla Firefox and Brave are now quietly embracing AI in an interesting way.


No, MCP Hasn’t Killed RAG — in Fact, They’re Complementary

Just as agentic systems are all the rage this year, so is MCP. But MCP is sometimes talked about as if it’s a replacement for RAG. So let’s review the definitions. In his “Is RAG dead yet?” post, Kiela defined RAG as follows: “In simple terms, RAG extends a language model’s knowledge base by retrieving relevant information from data sources that a language model was not trained on and injecting it into the model’s context.” As for MCP (and the middle letter stands for “context”), according to Anthropic’s documentation, it “provides a standardized way to connect AI models to different data sources and tools.” That’s the same definition, isn’t it? Not according to Kiela. In his post, he argued that MCP complements RAG and other AI tools: “MCP simplifies agent integrations with RAG systems (and other tools).” In our conversation, Kiela added further (ahem) context. He explained that MCP is a communication protocol — akin to REST or SOAP for APIs — based on JSON-RPC. It enables different components, like a retriever and a generator, to speak the same language. MCP doesn’t perform retrieval itself, he noted, it’s just the channel through which components interact. “So I would say that if you have a vector database and then you make that available through MCP, and then you let the language model use it through MCP, that is RAG,” he continued.


AI didn’t kill Stack Overflow

Stack Overflow’s most revolutionary aspect was its reputation system. That is what elevated it above the crowd. The brilliance of the rep game allowed Stack Overflow to absorb all the other user-driven sites for developers and more or less kill them off. On Stack Overflow, users earned reputation points and badges for asking good questions and providing helpful answers. In the beginning, what was considered a good question or answer was not predetermined; it was a natural byproduct of actual programmers upvoting some exchanges and not others. ... For Stack Overflow, the new model, along with highly subjective ideas of “quality” opened the gates to a kind of Stanford Prison Experiment. Rather than encouraging a wide range of interactions and behaviors, moderators earned reputation by culling interactions they deemed irrelevant. Suddenly, Stack Overflow wasn’t a place to go and feel like you were part of a long-lived developer culture. Instead, it became an arena where you had to prove yourself over and over again. ... Whether the culture of helping each other will survive in this new age of LLMs is a real question. Is human helping still necessary? Or can it all be reduced to inputs and outputs? Maybe there’s a new role for humans in generating accurate data that feeds the LLMs. Maybe we’ll evolve into gardeners of these vast new tracts of synthetic data.