Daily Tech Digest - July 25, 2025


 Quote for the day:

"Technology changes, but leadership is about clarity, courage, and creating momentum where none exists." -- Inspired by modern digital transformation principles


Why foundational defences against ransomware matter more than the AI threat

The 2025 Cyber Security Breaches Survey paints a concerning picture. According to the study, ransomware attacks doubled between 2024 and 2025 – a surge less to do with AI innovation and more about deep-rooted economic, operational and structural changes within the cybercrime ecosystem. At the heart of this growth in attacks is the growing popularity of the ransomware-as-a-service (RaaS) business model. Groups like DragonForce or Ransomhub sell ready-made ransomware toolkits to affiliates in exchange for a cut of the profits, enabling even low-skilled attackers to conduct disruptive campaigns. ... Breaches often stem from common, preventable issues such as poor credential hygiene or poorly configured systems – areas that often sit outside scheduled assessments. When assessments happen only once or twice a year, new gaps may go unnoticed for months, giving attackers ample opportunity. To keep up, organisations need faster, more continuous ways of validating defences. ... Most ransomware actors follow well-worn playbooks, making them frequent visitors to company networks but not necessarily sophisticated ones. That’s why effective ransomware prevention is not about deploying cutting-edge technologies at every turn – it’s about making sure the basics are consistently in place. 


Subliminal learning: When AI models learn what you didn’t teach them

“Subliminal learning is a general phenomenon that presents an unexpected pitfall for AI development,” the researchers from Anthropic, Truthful AI, the Warsaw University of Technology, the Alignment Research Center, and UC Berkeley, wrote in their paper. “Distillation could propagate unintended traits, even when developers try to prevent this via data filtering.” ... Models trained on data generated by misaligned models, where AI systems diverge from their original intent due to bias, flawed algorithms, data issues, insufficient oversight, or other factors, and produce incorrect, lewd or harmful content, can also inherit that misalignment, even if the training data had been carefully filtered, the researchers found. They offered examples of harmful outputs when student models became misaligned like their teachers, noting, “these misaligned responses are egregious far beyond anything in the training data, including endorsing the elimination of humanity and recommending murder.” ... Today’s multi-billion parameter models are able to discern extremely complicated relationships between a dataset and the preferences associated with that data, even if it’s not immediately obvious to humans, he noted. This points to a need to look beyond semantic and direct data relationships when working with complex AI models.


Why people-first leadership wins in software development

It frequently involves pushing for unrealistic deadlines, with project schedules made without enough input from the development team about the true effort needed and possible obstacles. This results in ongoing crunch periods and mandatory overtime. ... Another indicator is neglecting signs of burnout and stress. Leaders may ignore or dismiss signals such as team members consistently working late, increased irritability, or a decline in productivity, instead pushing for more output without addressing the root causes. Poor work-life balance becomes commonplace, often without proper recognition or rewards for the extra effort. ... Beyond the code, there’s a stifled innovation and creativity. When teams are constantly under pressure to just “ship it,” there’s little room for creative problem-solving, experimentation, or thinking outside the box. Innovation, often born from psychological safety and intellectual freedom, gets squashed, hindering your company’s ability to adapt to new trends and stay competitive. Finally, there’s damage to your company’s reputation. In the age of social media and employer review sites, news travels fast. ... It’s vital to invest in team growth and development. Provide opportunities for continuous learning, training, and skill enhancement. This not only boosts individual capabilities but also shows your commitment to their long-term career paths within your organization. This is a crucial retention strategy.


Achieving resilience in financial services through cloud elasticity and automation

In an era of heightened regulatory scrutiny, volatile markets, and growing cybersecurity threats, resilience isn’t just a nice-to-have—it’s a necessity. A lack of robust operational resilience can lead to regulatory penalties, damaged reputations, and crippling financial losses. In this context, cloud elasticity, automation, and cutting-edge security technologies are emerging as crucial tools for financial institutions to not only survive but thrive amidst these evolving pressures. ... Resilience ensures that financial institutions can maintain critical operations during crises, minimizing disruptions and maintaining service quality. Efficient operations are crucial for maintaining competitive advantage and customer satisfaction. ... Effective resilience strategies help institutions manage diverse risks, including cyber threats, system failures, and third-party vulnerabilities. The complexity of interconnected systems and the rapid pace of technological advancement add layers of risk that are difficult to manage. ... Financial institutions are particularly susceptible to risks such as system failures, cyberattacks, and third-party vulnerabilities. ... As financial institutions navigate a landscape marked by heightened risk, evolving regulations, and increasing customer expectations, operational resilience has become a defining imperative.


Digital attack surfaces expand as key exposures & risks double

Among OT systems, the average number of exposed ports per organisation rose by 35%, with Modbus (port 502) identified as the most commonly exposed, posing risks of unauthorised commands and potential shutdowns of key devices. The exposure of Unitronics port 20256 surged by 160%. The report cites cases where attackers, such as the group "CyberAv3ngers," targeted industrial control systems during conflicts, exploiting weak or default passwords. ... The number of vulnerabilities identified on public-facing assets more than doubled, rising from three per organisation in late 2024 to seven in early 2025. Critical vulnerabilities dating as far back as 2006 and 2008 still persist on unpatched systems, with proof-of-concept code readily available online, making exploitation accessible even to attackers with limited expertise. The report also references the continued threat posed by ransomware groups who exploit such weaknesses in internet-facing devices. ... Incidents involving exposed access keys, including cloud and API keys, doubled from late 2024 to early 2025. Exposed credentials can enable threat actors to enter environments as legitimate users, bypassing perimeter defenses. The report highlights that most exposures result from accidental code pushes to public repositories or leaks on criminal forums.


How Elicitation in MCP Brings Human-in-the-Loop to AI Tools

Elicitation represents more than an incremental protocol update. It marks a shift toward collaborative AI workflows, where the system and human co-discover missing context rather than expecting all details upfront. Python developers building MCP tools can now focus on core logic and delegate parameter gathering to the protocol itself, allowing for a more streamlined approach. Clients declare an elicitation capability during initialization, so servers know they may elicit input at any time. That standardized interchange liberates developers from generating custom UIs or creating ad hoc prompts, ensuring coherent behaviour across diverse MCP clients. ... Elicitation transforms human-in-the-loop (HITL) workflows from an afterthought to a core capability. Traditional AI systems often struggle with scenarios that require human judgment, approval, or additional context. Developers had to build custom solutions for each case, leading to inconsistent experiences and significant development overhead. With elicitation, HITL patterns become natural extensions of tool functionality. A database migration tool can request confirmation before making irreversible changes. A document generation system can gather style preferences and content requirements through guided interactions. An incident response tool can collect severity assessments and stakeholder information as part of its workflow.


Cognizant Agents Gave Hackers Passwords, Clorox Says in Lawsuit

“Cognizant was not duped by any elaborate ploy or sophisticated hacking techniques,” the company says in its partially redacted 19-page complaint. “The cybercriminal just called the Cognizant Service Desk, asked for credentials to access Clorox’s network, and Cognizant handed the credentials right over. Cognizant is on tape handing over the keys to Clorox’s corporate network to the cybercriminal – no authentication questions asked.” ... The threat actors made multiple calls to the Cognizant help desk, essentially asking for new passwords and getting them without any effort to verify them, Clorox wrote. They then used those new credentials to gain access to the corporate network, launching a “debilitating” attack that “paralyzed Clorox’s corporate network and crippled business operations. And to make matters worse, when Clorox called on Cognizant to provide incident response and disaster recovery support services, Cognizant botched its response and compounded the damage it had already caused.” In statement to media outlets, a Cognizant spokesperson said it was “shocking that a corporation the size of Clorox had such an inept internal cybersecurity system to mitigate this attack.” While Clorox is placing the blame on Cognizant, “the reality is that Clorox hired Cognizant for a narrow scope of help desk services which Cognizant reasonably performed. Cognizant did not manage cybersecurity for Clorox,” the spokesperson said.


Digital sovereignty becomes a matter of resilience for Europe

Open-source and decentralized technologies are essential to advancing Europe’s strategic autonomy. Across cybersecurity, communications, and foundational AI, we’re seeing growing support for open-source infrastructure, now treated with the same strategic importance once reserved for energy, water and transportation. The long-term goal is becoming clear: not to sever global ties, but to reduce dependencies by building credible, European-owned alternatives to foreign-dominated systems. Open-source is a cornerstone of this effort. It empowers European developers and companies to innovate quickly and transparently, with full visibility and control, essential for trust and sovereignty. Decentralized systems complement this by increasing resilience against cyber threats, monopolistic practices and commercial overreach by “big tech”. While public investment is important, what Europe needs most is a more “risk-on” tech environment, one that rewards ambition, accelerated growth and enables European players to scale and compete globally. Strategic autonomy won’t be achieved by funding alone, but by creating the right innovation and investment climate for open technologies to thrive. Many sovereign platforms emphasize end-to-end encryption, data residency, and open standards. Are these enough to ensure trust, or is more needed to truly protect digital independence?



Building better platforms with continuous discovery

Platform teams are often judged by stability, not creativity. Balancing discovery with uptime and reliability takes effort. So does breaking out of the “tickets and delivery” cycle to explore problems upstream. But the teams that manage it? They build platforms that people want to use, not just have to use. Start by blocking time for discovery in your sprint planning, measuring both adoption and friction metrics, and most importantly, talking to your users periodically rather than waiting for them to come to you with problems. Cultural shifts like this take time because you're not just changing the process; you're changing what people believe is acceptable or expected. That kind of change doesn't happen just because leadership says it should, or because a manager adds a new agenda to planning meetings. It sticks when ICs feel inspired and safe enough to work differently and when managers back that up with support and consistency. Sometimes a C-suite champion helps set the tone, but day-to-day, it's middle managers and senior ICs who do the slow, steady work of normalizing new behavior. You need repeated proof that it's okay to pause and ask why, to explore, to admit uncertainty. Without that psychological safety, people just go back to what they know: deliverables and deadlines. 


AI-enabled software development: Risk of skill erosion or catalyst for growth?

We need to reframe AI not as a rival, but as a tool—one that has its own pros and cons and can extend human capability, not devalue it. This shift in perspective opens the door to a broader understanding of what it means to be a skilled engineer today. Using AI doesn’t eliminate the need for expertise—it changes the nature of that expertise. Classical programming, once central to the developer’s identity, becomes one part of a larger repertoire. In its place emerge new competencies: critical evaluation, architectural reasoning, prompt literacy, source skepticism, interpretative judgment. These are not hard skills, but meta-cognitive abilities—skills that require us to think about how we think. We’re not losing cognitive effort—we’re relocating it. This transformation mirrors earlier technological shifts. ... Some of the early adopters of AI enablement are already looking ahead—not just at the savings from replacing employees with AI, but at the additional gains those savings might unlock. With strategic investment and redesigned expectations, AI can become a growth driver—not just a cost-cutting tool. But upskilling alone isn’t enough. As organizations embed AI deeper into the development workflow, they must also confront the technical risks that come with automation. The promise of increased productivity can be undermined if these tools are applied without adequate context, oversight, or infrastructure.

No comments:

Post a Comment