Daily Tech Digest - December 15, 2024

Navigating the Future: Cloud Migration Journeys and Data Security

To meet the requirements of DORA and future regulations, business leaders must adopt a proactive and reflexive approach to cybersecurity. Strong cyber hygiene practices must be integrated throughout the business, ensuring consistency in how data is handled, protected, and accessed. It is important to note at this juncture that enhanced data security isn’t purely focused on compliance. Modern IT researchers and business analysts have been studying what differentiates the most innovative companies for decades and have identified two key principles that help businesses achieve this: Unified Control and Federated Protection. ... Advancements in data security technologies are reshaping the cloud landscape, enabling faster and more secure migrations. Privacy Enhancing Technologies (PETs) like dynamic data masking (DDM), tokenisation, and format-preserving encryption help businesses anonymise sensitive data, reducing breach risks while keeping cloud adoption fast and flexible. However, as businesses will inevitably adopt multi-cloud strategies to support their processes, they will require interoperable security platforms that can seamlessly integrate across multiple cloud environments. 


Maximizing AI Payoff in Banking Will Demand Enterprise-Level Rewiring

Beyond thinking in broad strokes of AI’s applicability in the bank, McKinsey holds that an institution has to be ready to adopt multiple kinds of AI set up in a way to work with each other. This includes analytical AI — the types of AI that some banks have been using for years for credit and portfolio analysis, for instance — and generative AI, in the forms of ChatGPT and others, as well as “agentic AI.” In general, agentic AI uses AI that applies other types of AI to perform analyses and solve problems as a “virtual coworker.” It’s a developing facet of AI and, as described in the report, is meant to manage multiple AI inputs, rather than having a bank lean on one model. ... “You measure the outcomes you want to achieve and at the end of the pilot you will typically come out with a very good understanding of how to scale it,” Giovine says. Over six to 12 months after the pilot, “you can scale it over a good chunk of the domain.” And here, the consultant says, is where the bonus kicks in: Often a good deal of the work done to bring AI thinking to one domain can be re-used. This applies to both the business thinking and technology.


Synthetic data has its limits — why human-sourced data can help prevent AI model collapse

The more AI-generated content spreads online, the faster it will infiltrate datasets and, subsequently, the models themselves. And it’s happening at an accelerated rate, making it increasingly difficult for developers to filter out anything that is not pure, human-created training data. The fact is, using synthetic content in training can trigger a detrimental phenomenon known as “model collapse” or “model autophagy disorder (MAD).” Model collapse is the degenerative process in which AI systems progressively lose their grasp on the true underlying data distribution they’re meant to model. This often occurs when AI is trained recursively on content it generated, leading to a number of issues:Loss of nuance: Models begin to forget outlier data or less-represented information, crucial for a comprehensive understanding of any dataset. Reduced diversity: There is a noticeable decrease in the diversity and quality of the outputs produced by the models. Amplification of biases: Existing biases, particularly against marginalized groups, may be exacerbated as the model overlooks the nuanced data that could mitigate these biases. Generation of nonsensical outputs: Over time, models may start producing outputs that are completely unrelated or nonsensical.


The Macy’s accounting disaster: CIOs, this could happen to you

It wasn’t outright fraud or theft. But that’s merely because the employee didn’t try to steal. But the same lax safeguards that allowed expense dollars to be underreported could have just as easily allowed actual theft. “What will happen when someone actually has motivation to commit fraud? They could have just as easily kept the $150 million,” van Duyvendijk said. “They easily could have committed mass fraud without this company knowing. (Macy’s) people are not reviewing manual journals very carefully.” ... “It’s true that most ERPs are not designed to catch erroneous accounting,” she said. “However, there are software tools that allow CFOs and CAOs to create more robust controls around accounting processes and to ensure the expenses get booked to the correct P&L designation. Initiating, approving, recording transactions, and reconciling balances are each steps that should be handled by a separate member of the team. There are software tools that can assist with this process, such as those that enable use of AI analytics to assess actual spend and compare that spend to your reported expenses. Some such tools use AI to look for overriding journal entries that reverse expense items and move those expenses to a balance sheet account.”


Digital Nomads and Last-Minute Deals: How Online Data Enables Offline Adventures

Along with remote work preference, the pandemic boosted another trend. Many emerged from it more spontaneous, seeing how travel can be restricted so suddenly and for so long. Even before, millennials were ready to embrace impromptu travel, with half of them having planned last-minute vacations. For digital nomads, last-minute deals for flights and hotels are even more important as they need to adapt to changing situations quickly to strike a work-life balance on the go. This opens opportunities for websites to offer services that assist digital nomads in finding the best last-minute deals. ... Many of the first successful startups by the nomads were teaching about the nomadic lifestyle or connecting the nomads with each other. For example, some websites use APIs to aggregate data about the suitability of cities for remote work. Drawing data from various online sources in real time, such platforms can constantly provide information relevant to traveling remote workers. And the relevant information is very diverse. The aforementioned travel and hospitality prices and deals alone generate volumes of data every second. Then, there is information about security and internet stability in various locations, which requires reliable and constantly updated reviews.


It’s not what you know, it’s how you know you know it

Developers and technologists have been learning to code using online media such as blogs and videos increasingly in the last four years according to the Stack Overflow Developer Survey–60% in 2021 increased to 82% in 2024. The latest resource that developers could utilize for learning is generative AI which is emerging as a key tool that offers real-time problem-solving assistance, personalized coding tips, and innovative ways to enhance skill development seamlessly integrated within daily workflows. There has been a lot of excitement in the world of software development about AI’s potential to increase the speed of learning and access to more knowledge. Speculation abounds as to whether learning will be helped or hindered by AI advancement. Our recent survey of over 700 developers and technologists reveals the process of knowing things is just that—a process. New insights about how the Stack Overflow community learns demonstrate that software professionals prefer to gain and share knowledge through hands-on interactions. Their preferences for sourcing and contributing to groups or individuals (or AI) provides color on the evolving landscape of knowledge work.


What is data science? Transforming data into value

While closely related, data analytics is a component of data science, used to understand what an organization’s data looks like. Data science takes the output of analytics to solve problems. Data scientists say that investigating something with data is simply analysis, so data science takes analysis a step further to explain and solve problems. Another difference between data analytics and data science is timescale. Data analytics describes the current state of reality, whereas data science uses that data to predict and understand the future. ... The goal of data science is to construct the means to extract business-focused insights from data, and ultimately optimize business processes or provide decision support. This requires an understanding of how value and information flows in a business, and the ability to use that understanding to identify business opportunities. While that may involve one-off projects, data science teams more typically seek to identify key data assets that can be turned into data pipelines that feed maintainable tools and solutions. Examples include credit card fraud monitoring solutions used by banks, or tools used to optimize the placement of wind turbines in wind farms.


Tech Giants Retain Top Spots, Credit Goes to Self-Disruption

Companies today know they are not infallible in the face of evolving technologies. They are willing to disrupt their tried and tested offerings to fully capitalize on innovation. This ability of "dual transformation" - sustaining as well as reinventing the core business - is a hallmark of successful incumbents. It enables companies to optimize their existing operations while investing in the future, ensuring they are not caught flat-footed when the next wave of disruption hits. And because they have capital, talent and resources, they are already ahead of newer players. ... There is also a core cultural shift to encourage innovative thinking. Amazon implemented its famous "two-pizza teams" approach, where small, autonomous groups work on focused projects with minimal bureaucracy. Launched during the dot-com boom, Amazon subsequently ventured into successful innovations, including Prime, AWS and Alexa. Google's longstanding "20% time" policy, which allows employees to dedicate a portion of their workweek to passion projects, resulted in breakthrough products including AdSense and Google News. Drawing from decades of experience, these organizations know the whole is greater than the sum of its parts.


The Power of the Collective Purse: Open-Source AI Governance and the GovAI Coalition

Collaboration and transparency often go hand in hand. One of the most significant outcomes of the GovAI Coalition’s work is the development of open-source resources that benefit not only coalition members but also vendors and uninvolved governments. By pooling resources and expertise, the coalition is creating a shared repository of guidelines, contracting language, and best practices that any government entity can adapt to their specific needs. This collaborative, open-source initiative greatly reduces the transaction costs for government agencies, particularly those that are understaffed or under-resourced. While the more expansive budgets and technological needs of larger state and local governments sometimes lead to outsized roles in Coalition standard-setting, this allows smaller local governments, which may lack the capacity to develop comprehensive AI governance frameworks independently, to draw on the Coalition’s collective institutional expertise. This crowd-sourced knowledge ensures that even the smallest agencies can implement robust AI governance policies without having to start from scratch.


Redefining software excellence: Quality, testing, and observability in the age of GenAI

Traditional test automation has long relied on rigid, code-based frameworks, which require extensive scripting to specify exactly how tests should run. GenAI upends this paradigm by enabling intent-driven testing. Instead of focusing on rigid, script-heavy frameworks, testers can define high-level intents, like “Verify user authentication,” and let the AI dynamically generate and execute corresponding tests. This approach reduces the maintenance overhead of traditional frameworks, while aligning testing efforts more closely with business goals and ensuring broader, more comprehensive test coverage. ... QA and observability are no longer siloed functions. GenAI creates a semantic feedback loop between these domains, fostering a deeper integration like never before. Robust observability ensures the quality of AI-driven tests, while intent-driven testing provides data and scenarios that enhance observability insights and predictive capabilities. Together, these disciplines form a unified approach to managing the growing complexity of modern software systems. By embracing this symbiosis, teams not only simplify workflows but raise the bar for software excellence, balancing the speed and adaptability of GenAI with the accountability and rigor needed to deliver trustworthy, high-performing applications.



Quote for the day:

"Success is not the key to happiness. Happiness is the key to success. If you love what you are doing, you will be successful." -- Albert Schweitzer

No comments:

Post a Comment