Daily Tech Digest - December 31, 2025


Quote for the day:

“To be successful you need friends and to be very successful you need enemies.” -- Sidney Sheldon



AI agents to outnumber humans, warns Token Security

Many agents now run in controlled, non-production environments. Token Security predicts that organisations will soon connect them directly to live systems. The company says this will force enterprises to manage agent permissions and lifecycle controls more actively. It also expects new processes for assigning accountability when an autonomous system carries out an action on behalf of a team or individual. Apelblat believes established compliance structures will not cope with this change in the workforce. Traditional frameworks assume that humans sit at the centre of most workflows. ... "Despite innovation in agentic AI, enterprises will enter 2026 still relying on static API keys and long-term credentials. These legacy mechanisms will quietly weaken agent identity integrity, creating fragile trust chains that attackers can easily exploit," said Shlomo. Shlomo also predicts a reversal of some progress made in reducing secrets stored on endpoints. Many companies have moved staff onto single sign-on and centralised identity systems. He believes poor management of local Model Context Protocol servers will now cause a resurgence of cleartext service credentials on employee devices. ... "The industry is shifting from breaches caused by human identity failures to breaches rooted in AI agent identity compromise. As agents become operational backbones, attacks targeting their tokens, personas, and delegated authority will define the next wave of high-impact incidents," said Shlomo.


AI killed the cloud-first strategy: Why hybrid computing is the only way forward now

Existing infrastructures now configured with cloud services simply may not be ready for emerging AI demands, a recent analysis from Deloitte warned. "The infrastructure built for cloud-first strategies can't handle AI economics," the report, penned by a team of Deloitte analysts led by Nicholas Merizzi, said. "Processes designed for human workers don't work for agents. Security models built for perimeter defense don't protect against threats operating at machine speed. IT operating models built for service delivery don't drive business transformation." ... AI token costs have dropped 280-fold in two years, they observe -- yet "some enterprises are seeing monthly bills in the tens of millions." The overuse of cloud-based AI services "can lead to frequent API hits and escalating costs." There's even a tipping point in which on-premises deployments make more sense. ... AI often demands near-zero latency to deliver actions. "Applications requiring response times of 10 milliseconds or below cannot tolerate the inherent delays of cloud-based processing," the Deloitte authors point out. ... Resilience is also part of the pressing requirements for fully functional AI processes. These include "mission-critical tasks that cannot be interrupted require on-premises infrastructure in case connection to the cloud is interrupted," the analysts state. ... Whether employing cloud or on-premises systems, companies should always take direct responsibility for security and monitoring, Rana said.


Agentic AI breaks out of the lab and forces enterprises to grow up

The first major stride is the shift from improvisation to repeatable patterns. Early agentic projects were nearly all “glue code”, prompt chains stitched together with brittle tool wiring and homegrown memory hacks. Every workflow was a snowflake. But now, mature organizations are creating shared agentic primitives that development teams can reuse. ... The second major stride is the rise of enterprise grade governance and safety frameworks designed specifically for agentic workflows. Traditional AI governance wasn’t built for systems that take autonomous actions, call tools, modify infrastructure, and reason over long sequences. Enterprises are now treating governance as a first class engineering challenge. ... The third stride is a philosophical and architectural shift in where enterprises choose to invest. Many companies spent months crafting custom planning modules, memory layers, tool registries, and agent routers, believing these would become strategic assets. But experience is proving otherwise. ... The fourth and most important stride is the move toward building durable components that will matter long after orchestration layers become commoditized. Enterprises increasingly understand that their competitive advantage will come from institutional intelligence: domain specific tool schemas, curated datasets, validated decision policies, and deep integration with their existing SDLC, incident response, and SOC workflows.


Businesses have always complained about compliance obligations. Could they automate themselves out of it?

Compliance can often seem like an exercise in Kafkaesque absurdity. Nutanix’s director of systems engineering, James Sturrock, says it’s not uncommon for two in-house experts to have differing opinions on how to solve the same thorny regulatory conundrum. That isn’t even getting into how competing jurisdictions might view the problem. ... Equally important are potential unknowns such as contaminated soil or sewers that don’t appear on maps or where data is incomplete. These don’t just represent potential holdups to work – and resulting penalties – but represent further risks in themselves. ... Automating alerts or making it easier to spot compliance headaches early is one thing. But what might AI contribute toward simplifying more complex compliance conundrums, like those encountered by the financial services industry? In that sector, explains Pegasystems’ global banking industry lead Steve Morgan, such models have to be readily explainable not only to customers, but internal audit teams and regulators, too. Even then, it’s already clear that certain types of AI applications aren’t completely suitable for insertion into compliance workflows – most notably, GenAI. “Unless you have a very special model that’s trained” on a specific use case, says Morgan, the answers that such models provide compliance experts just aren’t predictable or accurate enough to meet the high standards demanded of banks.


Security coverage is falling behind the way attackers behave

Cybercriminals keep tweaking their procedures, trying out new techniques, and shifting tactics across campaigns. Coverage that worked yesterday may miss how those behaviors appear today. ... Activity expanded from ransomware driven campaigns into espionage aligned behavior, with targets including telecom, energy, military, and government organizations. Researchers tracked changes in tooling, credential access, and detection evasion, including expanded use of advanced techniques against cloud and enterprise environments. ... The report describes zero-day use as commoditized. Exploits move quickly from discovery into active abuse. This compresses defender response windows from weeks into days. Early detection depends on identifying behavior tied to exploitation rather than waiting for vulnerability disclosures or patches. ... Identity became a primary target. Campaigns focused on SaaS access, cloud administration, and single sign-on abuse. Luna Moth evolved from simple callback phishing into multi-channel operations combining voice, email, and infrastructure control. ... One theme that runs through the findings is the presence of defensive gaps at the procedure level. Many organizations track techniques and tools, while execution details that signal intent receive less attention. The research connects observed procedures directly to detection and prevention controls, showing where coverage holds and where it breaks down.


Widely Used Malicious Extensions Steal ChatGPT, DeepSeek Conversations

Stolen browser history data includes not only the complete URLs from all Chrome tabs, but also search queries containing sensitive keywords and research topics, URL parameters that could contain session tokens, user IDs, and authentication data, and internal corporate URLs revealing organizational structure and tools. ... Extensions are used to improve and customize users’ browsing experience. More people are using browsers, which can expand the attack surface of the individual and the companies they work for, according to security experts. “Browser extensions aren’t niche tools anymore; they’re deeply embedded in how people work,” Grip Security researchers Ben Robertson and Guy Katzir wrote earlier this year. “But that convenience comes with risk, especially when security teams don’t have visibility into what’s installed, what it can access, or how it behaves after login. The attack surface has shifted. And while endpoint agents and network controls still matter, they can’t see what’s happening inside the browser. That’s where threats like token hijacking and data leakage quietly take shape.” ... In the most recent case, the hackers created malicious extensions that impersonated a legitimate browser created by a company called AITOPIA. The extension puts a sidebar onto any website to give users the ability to chat with popular AI LLMs, OX Security’s Siman and Bustan wrote. 


2026: The year we stop trusting any single cloud

The real story is not that cloud platforms failed; it’s that enterprises quietly allowed those platforms to become single points of failure for entire business models. In 2025, many organizations discovered that their digital transformation had traded physical single points of failure for logical ones in the form of a single region, a single provider, or even a single managed database. When a hyperscaler region had trouble, companies learned the hard way that “highly available within a region” is not the same as “business resilient.” What caught even seasoned teams off guard was the hidden dependency chain. ... Expect to see targeted workload shifts that move critical customer-facing systems from single-region to multi-region or cross-cloud setups, re-architecting data platforms with replicated storage and active-active databases (meaning that we have two running, with one backing up the other). Also, relocating some systems to private or colocation environments based on risk. ... In 2026, smart enterprises will start asking their vendors the hard questions. Which regions and providers do you use? Do you have a tested failover strategy across regions or providers? What happens to my data and SLAs if your primary cloud has a regional incident? Many will diversify not just across hyperscalers, but across SaaS and managed services, deliberately avoiding over-concentration on any provider that cannot demonstrate meaningful redundancy.


AI Is Forcing Businesses To Rethink Their Data Strategies

One of the biggest misconceptions about cloud repatriation is that it’s a simple reversal of a cloud migration. In reality, AI workloads frequently exceed the capabilities of existing on-prem infrastructure. “Servers that were procured three years ago may not be able to handle what these applications require,” Brodsky says. As a result, repatriation decisions often trigger broader modernization efforts, including new hardware, increased power and cooling capacity, and redesigned architectures. Before making those investments, organizations need a clear understanding of their current environment and future requirements. ... “You have to evaluate whether your on-prem environment can actually ingest and protect what you’re bringing down from the cloud,” he says. Timelines and approaches vary. Some organizations opt for high-level assessments to guide strategy, while others pursue deeper technical workshops or phased transitions based on business priorities and service-level agreements. Despite the renewed interest in on-prem infrastructure, cloud repatriation doesn’t signal a retreat from cloud computing. Instead, it reflects a more mature understanding of hybrid IT. “Five years ago, we had daily conversations with customers who wanted to be 100% cloud,” Brodsky says. “Very few actually got there.” Today, most organizations operate hybrid environments by necessity, balancing cloud flexibility with on-prem performance, cost predictability and governance. 


AI-Driven CLM: The New Standard for Enterprise Contracts

Most enterprises still rely on fragmented approaches to contract management. Agreements live in email threads, local folders, and legacy systems that do not communicate with each other. Legal teams spend hours searching for documents that should be accessible in seconds. This disorganization creates real business consequences. Contracts expire without renewal. Compliance obligations go untracked. Revenue recognition gets delayed because finance cannot locate the signed agreement. ... AI-driven contract lifecycle management takes a fundamentally different approach. Instead of treating contracts as paperwork to be stored, modern CLM platforms treat them as data to be analyzed, monitored, and optimized. The shift starts with intelligent data extraction. When a contract enters the system, AI automatically identifies and extracts key terms, dates, obligations, and clauses. No more manual data entry. No more inconsistent tagging. The system understands what it is reading and organizes information accordingly. ... Every contract carries risk. Hidden indemnification clauses, unfavorable liability terms, and non-standard language can expose organizations to significant liability. Catching these issues manually requires experienced legal reviewers and substantial time. AI changes this equation. Modern CLM platforms scan agreements against predefined playbooks and flag deviations instantly. 


How to Do Enterprise Autonomy Right

Autonomous enterprise agents are architected differently. They integrate language understanding, taking calls, planning and orchestration into a closed loop. This allows the agent to assess goals, interpret inputs, break them down into tasks and execute across multiple systems. It can adapt when conditions change and learn from feedback over time. The shift from automation to autonomy requires moving from flow-based design to intent-based execution. For enterprises, this means embedding capabilities that allow agents to sense, decide and act in real time. ... It's non-negotiable for agents to function only within clearly defined domains, with visibility restricted to authorized data and systems. Second, their decision-making logic should be transparent and traceable, ensuring that every outcome can be audited and explained. Third, controls must exist to intervene in real time, whether to pause, override or shut down the agent entirely. Lastly, it is crucial for agents to be built to fail safely. If context shifts beyond their training, the agent must escalate or defer. This is not a fallback but rather is a core design principle that reinforces responsible AI posture. ... The line between productive autonomy and dangerous overgeneralization is best drawn where explainability ends. If a system's actions can no longer be explained in business terms, it is no longer serving the enterprise. Control is central to it and autonomy should expand only when safeguards, governance and organizational readiness evolve alongside it.

No comments:

Post a Comment