Daily Tech Digest - December 19, 2025


Quote for the day:

"A leader's dynamic does not come from special powers. It comes from a strong belief in a purpose and a willingness to express that conviction." -- Kouzes & Posner



AI tops CEO earnings calls as bubble fears intensify

Research by Hamburg-based IoT Analytics examined around 10,000 earnings calls from about 5,000 global companies listed in the US. The firm's latest quarterly study found that AI rose to the top of CEO agendas for the first time in the period, while concerns about a possible AI-related asset bubble also increased sharply. Mentions of an "AI bubble" climbed 64% compared with the previous quarter. IoT Analytics said executives often paired announcements of new AI investments with comments that questioned the sustainability of current market valuations and the pace of capital inflows into the sector. ... While the number of AI-related references reached a new high, comments that explicitly mentioned a "bubble" in connection with technology or financial markets grew even faster in percentage terms. The study recorded the strongest quarter-on-quarter jump in bubble-related language since it began tracking the metric. Executives used the term "bubble" in several contexts. Some discussed venture funding and valuations for private AI companies. Others raised questions about the level of spending on compute infrastructure and the potential for overcapacity. A smaller group linked bubble concerns to individual asset classes such as AI-related equities. The increase in bubble-related discussion came alongside continued announcements of long-term AI spending plans. 


AI governance becomes a board mandate as operational reality lags

Executives have clearly moved fast to formalize oversight. But the foundations needed to operationalize those frameworks—processes, controls, tooling, and skills embedded in day-to-day work—have not kept pace, according to the report. ... Many organizations still lack a comprehensive view of where AI is being used across their business, Singh explained. Shadow AI and unsanctioned tools proliferate, while sanctioned projects are not always cataloged in a central inventory. Without this map of AI systems and use cases, governance bodies are effectively trying to manage risk they cannot fully see. The second gap is conceptual. “There’s a myth that governance is the same as regulation,” Singh said. “Unfortunately, it’s not.” Governance, she argued, is much broader: It includes understanding and mitigating risk, but also proving out product quality, reliability, and alignment with organizational values. Treating governance as a compliance checkbox leaves major gaps in how AI actually behaves in production. The final one is AI literacy. “You can’t govern something you don’t use or understand,” Singh said. If only a small AI team truly grasps the technology while the rest of the organization is buying or deploying AI-enabled tools, governance frameworks will not translate into responsible decisions on the ground. ... What good governance looks like, Singh argued, is highly contextual. Organizations need to anchor governance in what they care about most. 


Legal Issues for Data Professionals: Data Centers in Space

If data is processed, copied, or stored on satellites, courts may be forced to decide whether space-based computing falls outside the scope of a “worldwide” license. A licensor could argue that the licensee exceeded the grant by moving data “off-planet,” creating an unintended new use. Moreover, even defining the equivalent of “territory” as “throughout the universe” raises questions as well as addressing them. The legal issues and regulatory rules involving data governance and legal rights in data centers in orbit have antecedents. ... Satellite-based data centers raise new questions: Where is an unauthorized copy of copyrighted material made for legal purposes, and which jurisdiction’s laws apply? A location in space complicates these legal issues and has implications for data governance. ... On Earth, IP enforcement against infringement relies on tools like forensic imaging, seizure of hard drives, discovery of server logs, and on-site inspections. Space breaks these tools. A court cannot easily order the seizure of a satellite. Inspecting hardware in orbit is not possible without specialized spacecraft. From a user’s perspective, retrieving logs may depend entirely on a vendor’s operation. ... Most cloud contracts and cyber insurance policies assume all processing happens on Earth. They do not address such things as satellite collisions, radiation damage, solar storms, loss of access due to orbital debris, or the failure of a satellite-to-Earth data link.


DNS as a Threat Vector: Detection and Mitigation Strategies

DNS is a critical control plane for modern digital infrastructure — resolving billions of queries per second, enabling content delivery, SaaS access, and virtually every online transaction. Its ubiquity and trust assumptions make it a high‑value target for attackers and a frequent root cause of outages. Unfortunately, this essential service can be exploited as a DoS vector. Attackers can harness misconfigured authoritative DNS servers, open DNS resolvers, or the networks that support such activities to initiate a flood of traffic to a target, impacting the service availability and causing disruptions in a large scale. This misuse of DNS capabilities makes it a potent tool in the hands of cybercriminals. ... DNS detection strategies focus on analyzing traffic patterns and query content for anomalies (like long/random subdomains, high volume, rare record types) to spot threats like tunneling, Domain Generation Algorithms, or malware, using AI/ML, threat intel, and SIEMs for real-time monitoring, payload analysis, and traffic analysis, complemented by DNSSEC and rate limiting for prevention. Legacy security tools often miss DNS threats. ... DNS mitigation strategies involve securing servers, controlling access (MFA, strong passwords), monitoring traffic for anomalies, rate-limiting queries, hardening configurations, and using specialized DDoS protection services to prevent amplification, hijacking, and spoofing attacks, ensuring domain integrity and availability.


The ‘chassis strategy’: How to build an innovation system that compounds value

The chassis strategy starts with a simple principle: centralize what must be common and decentralize what should evolve. You don’t need a monolithic innovation platform. You need a spine — a shared foundation of data, models and governance — that everything else plugs into. That spine ensures no matter who builds the next great idea — your team, a startup or a strategic partner — the learning, data and IP stay inside your system. ... You don’t need five years or an enterprise overhaul. A minimal but functional chassis can be built in nine months. The first three months are about framing and simplification. Pick three or four innovation domains — formulation, packaging, pricing or supply chain. Define the shared spine: your data schema, APIs and key metrics. Draw a bright line between what you’ll own (core) and what you’ll source (modules). The next three months are about building the core. Set up a unified data layer, model registry, API gateway and an experimentation sandbox. Keep it lightweight. No monoliths, no “innovation cloud.” Just the essentials that make reuse possible. The final three months are about plugging and proving. Integrate a few external modules — a supplier-insight engine, a generative packaging designer, a formulation optimizer. Track time to activation and reuse rate. The goal isn’t more features; it’s showing that vendors can connect fast, share data safely and strengthen the system.


AI is creating more software flaws – and they're getting worse

The CodeRabbit study found 10.83 issues with AI pull requests versus 6.45 for human-only ones, adding that AI pull requests were far more likely to have critical or major issues. "Even more striking: high-issue outliers were much more common in AI PRs, creating heavy review workloads," Loker said. Logic and correctness was the worst area for AI code, followed by code quality and maintainability and security. Because of that, CodeRabbit advised reviewers to watch out for those types of errors in AI code. ... "These include business logic mistakes, incorrect dependencies, flawed control flow, and misconfigurations," Loker wrote. "Logic errors are among the most expensive to fix and most likely to cause downstream incidents." AI code was also spotted omitting null checks, guardrails, and other error checking, which Loker noted are issues that can lead to outages in the real world. When it came to security, the most common mistake by AI was improper password handling and insecure object references, Loker noted, with security issues 2.74 times more common in AI code than that written by humans. Another major difference between AI code and human written-code was readability. "AI-produced code often looks consistent but violates local patterns around naming, clarity, and structure," Loker added.


Identity risk is changing faster than most security teams expect

Two forces are expected to influence trust systems in 2026. The first is the rise of autonomous AI agents. These agents run onboarding attempts, learn from rejection, and retry with improved tactics. Their speed compresses the window for detecting weaknesses and demands faster defensive responses. The second force comes from the long tail of quantum disruption. Growing quantum capability is putting pressure on classical cryptographic methods, which lose strength once computation reaches certain thresholds. Data encrypted today can be harvested and unlocked in the future. In response, some organizations are adopting quantum resilient hashing and beginning the transition toward post quantum cryptography that can withstand newer forms of computational power. ... A three part structure is emerging as a practical response. Hashing establishes integrity that cannot be altered. Encryption protects data while standards evolve. Predictive analysis identifies early drift and synthetic behavior before it scales. Together these elements support a continuous trust posture that strengthens as it absorbs more identity events. This model also addresses rising threats such as presentation spoofing, identity drift, and credential replay. All three are expected to increase in 2026 based on observed anomaly patterns. Since these vectors rely on repeated behaviors, long term monitoring is essential.


D&O liability protection rising for security leaders — unless you’re a midtier CISO

CISOs have the potential for more than one safety net, the first of which is a company’s indemnification provisions — rules typically embedded in the company’s articles of incorporation and bylaws. “The language of a company’s indemnification provisions must be properly worded — typically achieved by the general counsel and a board vote — to provide indemnification for a CISO equal to every other director or officer of a company,” explains John Peterson of World Insurance Associates, a provider of employment practice liability insurance. The second safety net for a CISO is the D&O liability insurance policy procured by the CISO’s company through an insurance broker. Even when a company has D&O insurance in place, Peterson advises CISOs to review those policies to make sure they are covered as an “insured person.” ... While enterprise CISOs often have access to legal teams and crisis PR advisors to help shield them, a midrange firm often has one or two people — possibly more — wearing multiple hats, like compliance, IT, and security all rolled into one. This can become an issue because “regulators, customers, and even the courts won’t lower the expectations just because the company is smaller,” Bagnall says. “Without legal protection, CISOs face significant personal and professional risk,” Bagnall said. 


The CIO Conundrum: Balancing Security and Innovation in the Age of AI SaaS

AI tools are now accessible, inexpensive, and often solve workflow friction that teams have lived with for years. The business is moving fast because the barrier to entry is low. This pace raises important questions for CIOs:Are we creating unnecessary friction where teams expect velocity? Have we made the “right path” faster than the workaround? Do our processes match how people work today? Shadow IT grows when official paths feel slow or unclear. Not because teams want to hide things, but because they feel innovation can’t wait. Governance must evolve to match that reality. ... Security should accelerate productivity, not constrain it. With strong identity controls, clear data boundaries, and automated configuration standards, we can introduce new tools without adding friction. These guardrails reduce the workload on security teams and create a predictable environment for employees. The business moves faster. IT gains visibility. The organization avoids the drift that creates risk and inefficiency. ... The question isn’t whether teams will continue exploring new tools, it’s whether we provide a responsible, scalable path forward. When intake is transparent, vetting is calibrated, and guardrails are embedded, the organization can innovate with confidence. The CIO’s job is to design frameworks that keep pace with the business, not frameworks the business waits on.


From hype to reality: The three forces defining security in 2026

Organisations should stop asking “what might agentic AI do” and start identifying the repeatable security workflows they want automated; for example: incident triage, patrol optimisation, evidence packaging; then measure agent performance against those KPIs. The winners in 2026 will be platforms that expose safe, auditable agent APIs and vendors who integrate them into end-to-end operational playbooks. ... Looking ahead, the widespread adoption of digital twins is poised to reshape the security industry’s approach to risk management and operational planning. With a unified, real-time view of complex environments, digital twins enable proactive decision-making, allowing security teams to anticipate threats, optimise resource allocation and continuously refine standard operating procedures. Over time, this capability will shift the industry from reactive incident response to predictive and preventative security strategies, where investment in training, infrastructure and technology is guided through simulated outcomes rather than historical events. ... AR and wearables have had turbulent history, but their resurgence in 2026 will be different — and AI is the reason. AI transforms wearables from simple capture devices into intelligent companions. It elevates AR from a visual overlay to a real-time, context-aware guidance layer. 

No comments:

Post a Comment