Daily Tech Digest - April 23, 2025


Quote for the day:

“Become the kind of leader that people would follow voluntarily, even if you had no title or position.” -- Brian Tracy


MLOps vs. DevOps: Key Differences — and Why They Work Better Together

Arguably, the greatest difference between DevOps and MLOps is that DevOps is, by most definitions, an abstract philosophy, whereas MLOps comes closer to prescribing a distinct set of practices. Ultimately, the point of DevOps is to encourage software developers to collaborate more closely with IT operations teams, based on the idea that software delivery processes are smoother when both groups work toward shared goals. In contrast, collaboration is not a major focus for MLOps. You could argue that MLOps implies that some types of collaboration between different stakeholders — such as data scientists, AI model developers, and model testers — need to be part of MLOps workflows. ... Another key difference is that DevOps centers solely on software development. MLOps is also partly about software development to the extent that model development entails writing software. However, MLOps also addresses other processes — like model design and post-deployment management — that don't overlap closely with DevOps as traditionally defined. ... Differing areas of focus lead to different skill requirements for DevOps versus MLOps. To thrive at DevOps, you must master DevOps tools and concepts like CI/CD and infrastructure-as-code (IaC).


Transforming quality engineering with AI

AI-enabled quality engineering promises to be a game changer, driving a level of precision and efficiency that is beyond the reach of traditional testing. AI algorithms can analyse historical data to identify patterns and predict quality issues, enabling organisations to take early action; machine learning tools detect anomalies with great accuracy, ensuring nothing is missed. Self-healing test scripts update automatically, without manual intervention. Machine Learning models automate test selection, picking the most relevant ones, while reducing both manual effort and errors. In addition, AI can prioritise test cases based on criticality, thus optimising resources and improving testing outcomes. Further, it can integrate with CI/CD pipelines, providing real-time feedback on code quality, and distributing updates automatically to ensure software applications are always ready for deployment. ... AI brings immense value to quality engineering, but also presents a few challenges. To function effectively, algorithms require high-quality datasets, which may not always be available. Organisations will likely need to invest significant resources in acquiring AI talent or building skills in-house. There needs to be a clear plan for integrating AI with existing testing tools and processes. Finally, there are concerns such as protecting data privacy and confidentiality, and implementing Responsible AI.


The Role of AI in Global Governance

Aurora drew parallels with transformative technologies such as electricity and the internet. "If AI reaches some communities late, it sets them far behind," he said. He pointed to Indian initiatives such as Bhashini for language inclusion, e-Sanjeevani for telehealth, Karya for employment through AI annotation and farmer.ai in Baramati, which boosted farmers' incomes by 30% to 40%. Schnorr offered a European perspective, stressing that AI's transformative impact on economies and societies demands trustworthiness. Reflecting on the EU's AI Act, he said its dual aim is fostering innovation while protecting rights. "We're reviewing the Act to ensure it doesn't hinder innovation," Schnorr said, advocating for global alignment through frameworks such as the G7's Hiroshima Code of Conduct and bilateral dialogues with India. He underscored the need for rules to make AI human-centric and accessible, particularly for small and medium enterprises, which form the backbone of both German and Indian economies. ... Singh elaborated on India's push for indigenous AI models. "Funding compute is critical, as training models is resource-intensive. We have the talent and datasets," he said, citing India's second-place ranking in GitHub AI projects per the Stanford AI Index. "Building a foundation model isn't rocket science - it's about providing the right ingredients."


Cisco ThousandEyes: resilient networks start with global insight

To tackle the challenges that arise from (common or uncommon) misconfigurations and other network problems, we need an end-to-end topology, Vaccaro reiterates. ThousandEyes (and Cisco as a whole) have recently put a lot of extra work into this. We saw a good example of this recently during Mobile World Congress. There, ThousandEyes announced Connected Devices. This is intended for service providers and extends their insight into the performance of their customers’ networks in their home environments. The goal, as Vaccaro describes it, is to help service providers see deeper so that they can catch an outage or other disruption quickly, before it impacts customers who might be streaming their favorite show or getting on a work call. ... The Digital Operational Resilience Act (DORA) will be no news to readers who are active in the financial world. You can see DORA as a kind of advanced NIS2, only directly enforced by the EU. It is a collection of best practices that many financial institutions must adhere to. Most of it is fairly obvious. In fact, we would call it basic hygiene when it comes to resilience. However, one component under DORA will have caused financial institutions some stress and will continue to do so: they must now adhere to new expectations when it comes to the services they provide and the resilience of their third-party ICT dependencies.


A Five-Step Operational Maturity Model for Benchmarking Your Team

An operational maturity model is your blueprint for building digital excellence. It gives you the power to benchmark where you are, spot the gaps holding you back and build a roadmap to where you need to be. ... Achieving operational maturity starts with knowing where you are and defining where you want to go. From there, organizations should focus on four core areas: Stop letting silos slow you down. Unify data across tools and teams to enable faster incident resolution and improve collaboration. Integrated platforms and a shared data view reduce context switching and support informed decision-making. Because in today’s fast-moving landscape, fragmented visibility isn’t just inefficient — it’s dangerous. ... Standardize what matters. Automate what repeats. Give your teams clear operational frameworks so they can focus on innovation instead of navigation. Eliminate alert noise and operational clutter that’s holding your teams back. Less noise, more impact. ... Deploy automation and AI across the incident lifecycle, from diagnostics to communication. Prioritize tools that integrate well and reduce manual tasks, freeing teams for higher-value work. ... Use data and automation to minimize disruptions and deliver seamless experiences. Communicate proactively during incidents and apply learnings to prevent future issues.


The Future is Coded: How AI is Rewriting the Rules of Decision Theaters

At the heart of this shift is the blending of generative AI with strategic foresight practices. In the past, planning for the future involved static models and expert intuition. Now, AI models (including advanced neural networks) can churn through reams of historical data and real-time information to project trends and outcomes with uncanny accuracy. Crucially, these AI-powered projections don’t operate in a vacuum – they’re designed to work with human experts. By integrating AI’s pattern recognition and speed with human intuition and domain expertise, organizations create a powerful feedback loop. ... The fusion of generative AI and foresight isn’t confined to tech companies or futurists’ labs – it’s already reshaping industries. For instance, in finance, banks and investment firms are deploying AI to synthesize market signals and predict economic trends with greater accuracy than traditional econometric models. These AI systems can simulate how different strategies might play out under various future market conditions, allowing policymakers in central banks or finance ministries to test interventions before committing to them. The result is a more data-driven, preemptive strategy – allowing decision-makers to adjust course before a forecasted risk materializes. 


More accurate coding: Researchers adapt Sequential Monte Carlo for AI-generated code

The researchers noted that AI-generated code can be powerful, but it can also often lead to code that disregards the semantic rules of programming languages. Other methods to prevent this can distort models or are too time-consuming. Their method makes the LLM adhere to programming language rules by discarding code outputs that may not work early in the process and “allocate efforts towards outputs that more most likely to be valid and accurate.” ... The researchers developed an architecture that brings SMC to code generation “under diverse syntactic and semantic constraints.” “Unlike many previous frameworks for constrained decoding, our algorithm can integrate constraints that cannot be incrementally evaluated over the entire token vocabulary, as well as constraints that can only be evaluated at irregular intervals during generation,” the researchers said in the paper. Key features of adapting SMC sampling to model generation include proposal distribution where the token-by-token sampling is guided by cheap constraints, important weights that correct for biases and resampling which reallocates compute effort towards partial generations. ... AI models have made engineers and other coders work faster and more efficiently. It’s also given rise to a whole new kind of software engineer: the vibe coder. 


You Can't Be in Recovery Mode All the Time — Superna CEO

The proactive approach, he explains, shifts their position in the security lifecycle: "Now we're not responding with a very tiny blast radius and instantly recovering. We are officially left-of-the-boom; we are now ‘the incident never occurred.’" Next, Hesterberg reveals that the next wave of innovation focuses on leveraging the unique visibility his company has in terms of how critical data is accessed. “We have a keen understanding of where your critical data is and what users, what servers, and what services access that data.” From a scanning, patching, and upgrade standpoint, Hesterberg shares that large organizations often face the daunting task of addressing hundreds or even thousands of systems flagged for vulnerabilities daily. To help streamline this process, he says that his team is working on a new capability that integrates with the tools these enterprises already depend on. This upcoming feature will surface, in a prioritized way, the specific servers or services that interact with an organization's most critical data, highlighting the assets that matter most. By narrowing down the list, Hesterberg notes, teams can focus on the most potentially dangerous exposures first. Instead of trying to patch everything, he says, “If you know the 15, 20, or 50 that are most dangerous, potentially most dangerous, you're going to prioritize them.” 


When confusion becomes a weapon: How cybercriminals exploit economic turmoil

Defending against these threats doesn’t start with buying more tools. It starts with building a resilient mindset. In a crisis, security can’t be an afterthought – it must be a guiding principle. Organizations relying on informal workflows or inconsistent verification processes are unknowingly widening their attack surface. To stay ahead, protocols must be defined before uncertainty takes hold. Employees should be trained not just to spot technical anomalies, but to recognize emotional triggers embedded in legitimate looking messages. Resilience, at its core, is about readiness. Not just to respond, but to also anticipate. Organizations that view economic disruption as a dual threat, both financial and cyber, will position themselves to lead with control rather than react in chaos. This means establishing behavioral baselines, implementing layered authentication, and adopting systems that validate not just facilitate. As we navigate continued economic uncertainty, we are reminded once again that cybersecurity is no longer just about technology. It’s about psychology, communication, and foresight. Defending effectively means thinking tactically, staying adaptive, and treating clarity as a strategic asset.


The productivity revolution – enhancing efficiency in the workplace

In difficult economic times, when businesses are tightening the purse strings, productivity improvements may often be overlooked in favour of cost reductions. However, cutting costs is merely a short-term solution. By focusing on sustainable productivity gains, businesses will reap dividends in the long term. To achieve this, organisations must turn their focus to technology. Some technology solutions, such as cloud computing, ERP systems, project management and collaboration tools, produce significant flexibility or performance advantages compared to legacy approaches and processes. Whilst an initial expense, the long-term benefits are often multiples of the investment – cost reductions, time savings, employee motivation, to name just a few. And all of those technology categories are being enhanced with artificial intelligence – for example adding virtual agents to help us do more, quickly. ... At a time when businesses and labour markets are struggling with employee retention and availability, it has become more critical than ever for organisations to focus on effective training and wellbeing initiatives. Minimising staff turnover and building up internal skill sets is vital for businesses looking to improve their key outputs. Getting this right will enable organisations to build smarter and more effective productivity strategies.


No comments:

Post a Comment