Daily Tech Digest - October 23, 2025


Quote for the day:

“The more you loose yourself in something bigger than yourself, the more energy you will have.” -- Norman Vincent Peale



Leadership lessons from NetForm founder Karen Stephenson

Co-creation is a hot buzzword encouraging individuals to integrate and create with each other, but the simplest way to integrate and create is in the mind of one person — if they’re willing to push forward and do it. Even further, what can an integrated team of diverse minds accomplish when they co-create? ... In the age of AI, humans will need to focus on what humans do well. At the moment, at least, that’s making novel connections, thinking by analogy and creating the new. Our single-field approach to learning, qualifications and career ladders makes it hard for us to compete with machines that are often smarter than we are in any given discipline. For that creative spark and to excel at what messy, forgetful, slow, imperfect humans do best, we need to work, think and live differently. In fact, the founders of five of the largest companies in the world are (or were) polymaths — mentally diverse people skilled in multiple disciplines — Bill Gates, Steve Jobs, Warren Buffett, Larry Page and Jeff Bezos. They learn because they’re curious and want to solve problems, not for a career ladder. It’s easier than ever, today, to learn with AI and online materials and to collaborate with tech and humans around the world. All you need to do is open inward to your talents and desires, explore, collect and fuse.


Why cloud and AI projects take longer and how to fix the holdups

In the case of the cloud, the problem is that senior management thinks that the cloud is always cheaper, that you can always cut costs by moving to the cloud. This is despite the recent stories on “repatriation,” or moving cloud applications back into the data center. In the case of cloud projects, most enterprise IT organizations now understand how to assess a cloud project for cost/benefit, so most of the cases where impossible cost savings are promised are caught in the planning phase. For AI, both senior management and line department management have high expectations with respect to the technology, and in the latter case may also have some experience with AI in the form of as-a-service generative AI models available online. About a quarter of these proposals quickly run afoul of governance policies because of problems with data security, and half of this group dies at this point. For the remaining proposals, there is a whole set of problems that emerge. Most enterprises admit that they really don’t understand what AI can do, which obviously makes it hard to frame a realistic AI project. The biggest gap identified is between an AI business goal and a specific path leading to it. One CIO calls the projects offered by user organizations as “invitations to AI fishing trips” because the goal is usually set in business terms, and these would actually require a project simply to identify how the stated goal could be achieved.


Who pays when a multi-billion-dollar data center goes down?

While the Lockton team is looking at everything from immersion cooling to drought, there are a handful of risks where it feels the industry isn't adequately preparing. “The big thing that isn't getting on people's radars in a growing way is customer equipment," Hayhow says “Looking at this through the lens of the data center owner or developer, it's often very difficult. “It's a bit of an unspoken conversation that the equipment in the white space belongs to the customer. Often you don't have custody over it, you don't have visibility over it, and it’s highly proprietary. But the value of it is growing.” Per square meter of white space, the Lockton partner suggests that the value of the equipment five years from now will be exponentially larger than the value of the equipment five years ago, as more data centers invest in expensive GPUs and other equipment for AI use cases. “Leases have become clearer in terms of placing responsibility for damage to customer equipment more squarely on the shoulders of the owner, developer,” Hayhow says. “We're having that conversation in the US, where the halls are larger, the value of the equipment is greater, and some of the hyperscale customers are being much more prescriptive in terms of wanting to address the topic of damage to our equipment … if you lose 20 megawatts worth of racks of Nvidia chips, the lead time to get those replaced, unless you're building elsewhere, is quite significant.”


AI Agents Need Security Training – Just Like Your Employees

“It may not be as candid as what humans would do during those sessions, but AI agents used by your workforce do need to be trained. They need to understand what your company policies are, including what is acceptable behavior, what data they're allowed to access, what actions they're allowed to take,” Maneval explained. ... “Most AI tools are just trained to do the same thing over and over and so it means decisions are based on assumptions from limited information,” she explained to Infosecurity. “Additionally, most AI tools solve real problems but also create real risks and each solve different problems and creates different risks.” While some cybersecurity experts argue that auditing AI tools is no different to auditing any other software or application, Maneval disagrees. ... Maneval’s said her “rule of thumb” is that whether you’re dealing with traditional machine learning algorithms, generative AI applications of AI agents, “treat them like any other employees.” This not only means that AI-powered agents should be trained on security policies but should also be forced to respect security controls that the staff have to respect, such as role-based access controls (RBAC). “You should look at how you treat your humans and apply those same controls to the AI. You probably do a background check before anyone is hired. Do the same thing with your AI agent. ..."


Why must CISOs slay a cyber dragon to earn business respect?

Why should a security leader need to experience a major cyber incident to earn business colleagues’ respect? Jeff Pollard, VP and principal analyst at Forrester, says this enterprise perception problem is “just part of human nature. If we don’t see the bad thing happening, we don’t appreciate all of the things that were done to prevent that bad thing from happening.” Of course, if an attack turns into an incident and defense goes poorly, “it can easily turn from a hero moment to a scapegoat moment,” Pollard says. Oberlaender, who now works as a cybersecurity consultant, is among those who believe hard-earned experience should be rewarded, but that’s not what he’s seeing in the market today. ... CISOs “feel that they need to fight off an attack to show value, but there are many other successes they can do and show,” says Erik Avakian, technical counselor at Info-Tech Research Group. “Building KPIs is a powerful way to show their value.” ... Chris Jackson, a senior cybersecurity specialist with tech education vendor Pluralsight, reinforces the frustration that many enterprise CISOs feel about the lack of appropriate respect from their colleagues and bosses. “CISOs are a lot like pro sports coaches. It doesn’t matter how well they performed during the season or how many games they won. If they don’t win the championship, it’s seen as a failure, and the coach is often the first to go,” Jackson says. 


The next cyber crisis may start in someone else’s supply chain

Organizations have improved oversight of their direct partners, but few can see beyond the first layer. This limited view leaves blind spots that attackers can exploit, particularly through third-party software or service providers. “We’re in a new generation of risk, one where cyber, geopolitical, technology, political risk, and other factors are converging and reshaping the landscape. The impact on markets and operations is unfolding faster than many organizations can keep up,” said Jim Wetekamp, CEO of Riskonnect. ... Third-party and nth-party risks continue to expose companies to disruption. Most organizations have business continuity plans for supplier disruptions, but their monitoring often stops at direct partners. Only a small fraction can monitor risks across multiple tiers of their supply chain, and some cannot track their critical technology providers at all. Organizations still underestimate how dependent they are on third parties and continue to rely on paper-based continuity plans that offer a false sense of security. ... More companies now have a chief risk officer, but funding for technology and tools has barely moved. Most risk leaders say their budgets have stayed the same even as they are asked to cover more ground. Many are turning to automation and specialized software to do more with what they already have.


Boardroom to War Room: Translating AI-Driven Cyber Risk into Action

Great CISOs today combine strategic leadership, financial knowledge, technological skills, and empathy to turn cybersecurity from a burden on operations into a strong enabler. This change happens faster with artificial intelligence. AI has a lot of potential, but it also makes things more uncertain. It can do things like forecast threats and automate orchestration. CISOs need to see AI problems as more than just technological problems; they need to see them as business risks that need clear communication, openness, and quick response. ... Not storytelling, but data and graphics win over executives. Suggested metrics include: Predictive accuracy - The percentage of risks that AI flagged before a breach compared to the percentage of threats that AI flagged after it happened; Speed of reaction - The average time it took for AI-enabled confinement to work compared to manual reaction; False positive rate - Tech teams employed AI to improve alerts and cut down on alert fatigue from X to Y; Third-party model risk - The number of outside model calls that were looked at and accepted; Visual callout suggestion - A mock-up of a dashboard that illustrates AI risk KPIs, a trendline of predictive value, and a drop in incidences. ... Change from being an IT responder who reacts to problems to a strategic AI-enabled risk leader. Take ownership of your AI risk story, keep an eye on third-party models, provide your board clear information, and make sure your war room functions quickly.


Govt. faces questions about why US AWS outage disrupted UK tax office and banking firms

“The narrative of bigger is better and biggest is best has been shown for the lie it always has been,” Owen Sayers, an independent security architect and data protection specialist with a long history of working in the public sector, told Computer Weekly. “The proponents of hyperscale cloud will always say they have the best engineers, the most staff and the greatest pool of resources, but bigger is not always better – and certainly not when countries rely on those commodity global services for their own national security, safety and operations. “Nationally important services must be recognised as best delivered under national control, and as a minimum, the government should be knocking on AWS’s door today and asking if they can in fact deliver a service that guarantees UK uptime,” he said. “Because the evidence from this week’s outage suggests that they cannot.” ... “In light of today’s major outage at Amazon Web Services … why has HM Treasury not designated Amazon Web Services or any other major technology firm as a CTP for the purposes of the Critical Third Parties Regime,” asked Hillier, in the letter. “[And] how soon can we expect firms to be brought into this regime?” Hillier also asked HM Treasury for clarification about whether or not it is concerned about the fact that “seemingly key parts of our IT infrastructure are hosted abroad” given the outage originated from a US-based AWS datacentre region but impacted the activities of Lloyds Bank and also HMRC.


Quantum work, federated learning and privacy: Emerging frontiers in blockchain research

It is possible to have a future in which the field of quantum computation could serve as the foundation for blockchain consensus. The future is alluring; quantum algorithms can provide solutions to the issues that classical computers find difficult and the method may be more effective and resistant to brute-force attacks. The danger, however, is significant: when quantum computers are sufficiently robust, existing encryption standards can be compromised. ... Federated learning is another upcoming element of blockchain studies, a machine learning model training technique that avoids data centralisation. Federated learning enables various devices or nodes to feed into a standard model instead of storing sensitive data in a central server inaccessible to third parties. ... The issue of privacy is of specific importance today due to the increased regulatory pressure on exchanges and cryptocurrency companies. A compromise between user privacy and regulatory openness could prove to be the key to success. Studies of privacy-saving instruments provide a competitive advantage to blockchain developers and for exchanges interested in increasing their influence on the global economy. ... The decade of blockchain research to come will not be characterised by fast transactions or cheaper costs. It will redraw the borders of trust, calculation, and privacy in digitally based economies. 


Ransomware groups surge as automation cuts attack time to 18 mins

The ransomware group LockBit has recently introduced "LockBit 5.0", reportedly incorporating artificial intelligence for attack randomisation and enhanced targeting options, with a focus on regaining its previous position atop the ransomware ecosystem. Medusa, by contrast, was noted to have fallen behind due in part to lacking widespread automated and customisable features, despite previous activity levels. ReliaQuest's analysis predicts the rise of new groups through the lens of its three-factor model, specifically naming "The Gentlemen" and "DragonForce" as likely to become major threats due to their adoption of advanced technical capabilities. The Gentlemen, for instance, has listed over 30 victims on its data-leak site within its first month of activity, underpinned by automation, prioritised encryption, and endpoint discovery for rapid lateral movement. Conversely, groups such as "Chaos" and "Nova" are likely to remain minor players, lacking the integral features associated with higher victim counts and affiliate recruitment. ... RaaS groups now use automation to reduce breakout times to as little as 18 minutes, making manual intervention too slow. Implement automated containment and response plays to keep pace with attackers. These workflows should automatically isolate hosts, block malicious files, and disable compromised accounts quickly after a critical detection, containing the threat before ransomware can be deployed.

No comments:

Post a Comment