Daily Tech Digest - November 22, 2025


Quote for the day:

"Definiteness of purpose is the starting point of all achievement." -- W. Clement Stone



How CIOs can get a better handle on budgets as AI spend soars

Everyone wants to become AI-centric or AI-native, says West Monroe’s Greenstein. “But nobody has extra buckets of money to do this unless it’s existential to their company,” he says. So moving money from legacy projects to AI is a popular strategy. “It’s a shift of priorities within companies,” he says. “They look at their investments and ask how many are no longer needed because of AI, or how many can be done with AI. Plus, they’re putting pressure on vendors to drive down costs. They’re definitely squeezing existing suppliers.” Even large, tech-forward companies might have to do this kind of juggling. ... “AI is in a self-funding model at the moment,” he says. “We’re shifting investment from legacy technologies to AI.” ... Another challenge to budgeting is the demands that AI places on people, systems, and data. One of the most significant challenges to managing AI costs is talent, says Principal’s Arora. “Skill gaps and cross-team dependencies can slow deliveries and drive up costs,” he says. Then there’s the problem of evolving regulations, and the need to continuously adapt governance frameworks to stay resilient in the face of these changes. Organizations also often underestimate how much money will be needed to train employees, and to bring data and other foundational systems in line with what’s needed for AI. “Legacy environments add complexity and expense,” he adds. “These one-time costs are heavy but essential to avoid long-term inefficiencies.”


AI agent evaluation replaces data labeling as the critical path to production deployment

It's a fundamental shift in what enterprises need validated: not whether their model correctly classified an image, but whether their AI agent made good decisions across a complex, multi-step task involving reasoning, tool usage and code generation. If evaluation is just data labeling for AI outputs, then the shift from models to agents represents a step change in what needs to be labeled. Where traditional data labeling might involve marking images or categorizing text, agent evaluation requires judging multi-step reasoning chains, tool selection decisions and multi-modal outputs — all within a single interaction. "There is this very strong need for not just human in the loop anymore, but expert in the loop," Malyuk said. He pointed to high-stakes applications like healthcare and legal advice as examples where the cost of errors remains prohibitively high. ... The challenge with evaluating agents isn't just the volume of data, it's the complexity of what needs to be assessed. Agents don't produce simple text outputs; they generate reasoning chains, make tool selections, and produce artifacts across multiple modalities. ... While monitoring what AI systems do remains important, observability tools measure activity, not quality. Enterprises require dedicated evaluation infrastructure to assess outputs and drive improvement. These are distinct problems requiring different capabilities.


How IT leaders can build successful AI strategies — the VC view

It’s clear now that AI is transforming existing business structures, operational layers, organizational charts, and processes. “As a CIO, if you look at long term, you get better visibility of the outcomes of AI,” said Sandhya Venkatachalam, founder and partner at Axiom Partners. “Today, a lot of these net new capabilities are taking the form of AI performing the work or producing the outcomes that humans do, versus emulating or automating software tools,” Venkatachalam said. The shift will inevitably displace legacy systems and processes. She cited customer support as an early area ripe for upheaval. ... VCs typically don’t look at what buyers need right now; they look ahead. Similarly, IT leaders should look at how AI can transform their industry in the future. The real value of AI is in displacing legacy stacks and processes, and short wins or scattered AI initiatives mean nothing, Venkatachalam said. Adding AI to existing workflows — like building an internal large language model (LLM) — is often a waste. Enterprises are also wasting time building proprietary tools and infrastructures, which duplicates work already commoditized by big research labs, Venkatachalam said. ... AI strategies link IT directly to core products, which dictates market survival. IT decision-makers should align AI strategies to their verticals markets. Physical AI is considered the next big AI technology after agents in some areas. 


Could AI transparency backfire for businesses?

Work is underway to devise common ways to disclose the use of AI in content creation. The British Standards Institute’s (BSI) common standard (BS ISO/IEC 42001:2023) provides a framework for organisations to establish, implement, maintain, and continually improve an AI management system (AIMS), ensuring AI applications are developed and operated ethically, transparently, and in alignment with regulatory standards. It helps manage AI-specific risks such as bias and lack of transparency. Mark Thirwell, the BSI’s global digital director, says that such standards are critical for building trust in AI. For his part, Thirwell is mainly focused on improving the transparency of underlying training data over whether content is disclosed as AI-generated. “You wouldn’t buy a toaster if someone hadn’t checked it to make sure it wasn’t going to set the kitchen on fire,” he argues. Thirwell posits that common standards can, and must, interrogate the trustworthiness of AI. Does it do what it says it’s going to do? Does it do that every time? Does it not do anything else – as hallucination and misinformation become increasingly problematic? Does it keep your data secure? Does it have integrity? And unique to AI, is it ethical? “If it’s detecting cancers or sifting through CVs,” he says, “is there going to be a bias based on the data it holds?” This is where transparency of the underlying data becomes key. 


The Importance of Having and Maintaining a Data Asset List and how to create one

The explosive growth of structured and unstructured data has made it increasingly difficult for organizations to track what information they hold across networks, devices, SaaS applications, and cloud platforms. Without clear visibility, businesses face higher risks, including security gaps, audit failures, regulatory penalties, and rising storage costs. ... Before we get into how to build a data asset inventory, it’s important to understand why regulators now expect organizations to maintain one. The compliance landscape in 2025 is more demanding than ever, and nearly every major framework explicitly or implicitly requires data mapping and data inventory management. ... A data asset inventory is a structured, centralized record of all the data types and systems that power your organization. The goal is to gain full visibility into what data exists, where it’s stored, who manages it, and how it flows, while also capturing any compliance obligations tied to that data. ... Many organizations rely on third-party providers to manage or process sensitive data, which can improve efficiency but also introduce new risks. External partnerships expand your organization’s digital footprint, increase the potential attack surface, and add complexity to data governance. ... A data asset inventory isn’t a one-time task, it’s a living, evolving document. As your organization adopts new tools, expands into new markets, or grows its teams, your inventory should evolve to reflect these changes. 


Building and Implementing Cyber Resilience Strategies

Currently, there is no unified standard for managing cyber resilience. Although many vendors offer their own solutions and some general standardization efforts are underway, a clear and consistent framework has yet to be established. As a result, organizations are forced to develop their own methods based on internal priorities and interpretations. The main challenge is that cyberattacks have become unavoidable and frequent. Traditional protective measures alone are no longer sufficient to fight modern threats. Another problem is the lack of coordination between IT, information security, and business units. ... In practice, however, its implementation largely depends on the organization’s maturity, scale, and specific infrastructure characteristics. The main difference lies in the level of detail: as a company grows, its infrastructure becomes more complex, the number of stakeholders increases, and each stage of analysis requires greater depth. In small organizations, identifying critical services is relatively quick, while in large enterprises, the process may involve analyzing hundreds of interconnected operations. Likewise, the scope of security measures varies—from basic hardening of key systems to multi-layered protection across distributed environments. At the same time, core principles such as threat analysis, incident response planning, and regular audits remain largely unchanged across all organizations.


Security researchers develop first-ever functional defense against cyberattacks on AI models

Researchers now warn that the most advanced of these attacks, called cryptanalytic extraction, can rebuild a model by asking it thousands of carefully chosen questions. Each answer helps reveal tiny clues about the model’s internal structure. Over time, those clues form a detailed map that exposes the model’s weights and biases. These attacks work surprisingly well when used on neural networks that rely on ReLU activation functions. Because these networks behave like piecewise linear systems, attackers can hunt for points where a neuron’s output flips between active and inactive and use those moments to uncover the neuron’s signature. ... Early methods could only recover partial information, but newer techniques can figure out both the size and the direction of the weights. Some even work using nothing more than the model’s predicted labels. All rely on the same core assumption. Neurons in a given layer behave differently enough that their signals can be separated. When that is true, the attack can cluster each neuron’s critical points and rebuild the entire network with surprising accuracy. ... The team tested this defense on neural networks that previous studies had broken in just a few hours. One of the clearest results comes from a model trained on the MNIST digit dataset with two small hidden layers. 


Draft Trump executive order signals new battle ahead over state AI powers

By eliminating that federal framework, the Trump White House positions itself not simply as preempting state authority, but also as reversing its immediate federal predecessor’s regulatory approach. The draft EO further states that the U.S. must sustain AI leadership through a “balanced, minimal regulatory environment,” language that signals a clear ideological orientation against safety-first or rights-protective models of AI governance. The administration wants the Department of Justice to challenge state AI laws it views as obstructive; the Department of Commerce to catalogue and publicly criticize state statutes deemed “burdensome;” and agencies like the Federal Communications Commission (FCC) and Federal Trade Commission (FTC) to establish national standards that would override state requirements. ... The move immediately raises questions not only about the future of AI governance but also about the structure of American federalism. For years, states have been the primary actors experimenting with AI regulation. They have advanced bills aimed at biometric privacy, algorithmic fairness, deepfake disclosure, automated decision-making transparency, and even restrictions on government use of facial recognition. These experiments, often more aggressive than anything contemplated in Congress, have become the country’s de facto laboratories of AI oversight. 


Engineering the Perfect Product Launch: Lessons from Prototype to Production

Rushing a product to market without a strong quality framework is a gamble most companies regret. Recalls, warranty claims and reputational damage cost far more than investing in quality upfront. The smarter approach is to build quality into the process from the start rather than bolting it in the end. ... During the product rollout I supported, we built proactive quality checkpoints at every stage of assembly. This meant small defects were caught early, long before they reached final testing. In one instance, a supplier batch with a minor material inconsistency was identified at the first inspection step, preventing what could have been a costly recall. Conversely, I’ve also seen how skipping just one validation step resulted in weeks of rework.  ... When all three elements: Development, quality and ERP work in harmony, product launches move faster and run smoothly. Costs are kept in check because inefficiencies are addressed early. Time-to-market accelerates because bottlenecks are anticipated. Manufacturing excellence becomes the standard from the first unit shipped, not something achieved after painful trial and error. ... Engineering a product launch is about orchestrating dozens of small, interconnected decisions across design, quality and enterprise systems. The companies that consistently succeed treat the launch as an engineering challenge, not just a marketing deadline.


Organisations struggle with non-human identity risks & AI demands

Growth in digital identities-both human and non-human-continues to strain legacy identity and access management practices. This identity sprawl raises the risk of credential-based threats and increases the attack surface for cybercriminals. "With organizations struggling to govern an expanding mesh of digital identities across human, machine, and AI entities, over-permissioned roles, shadow identities, and disconnected IAM systems will continue to expose organizations to credential-based attacks and lateral movement. AI will also reshape traditional social engineering: synthetic voices, deepfakes, and adaptive phishing will erode the reliability of static authentication, forcing organizations to adopt continuous and context-aware verification as the new baseline," said Benoit Grange ... "The NIS2 directive has ushered in stricter cybersecurity measures and reporting for a wider range of critical infrastructure and essential services across the European Union. For industries newly brought under this directive, including manufacturing, logistics and certain digital services, 2026 will bring new growing pains. The sectors, many long accustomed to minimal compliance oversight, now face strict governance and reporting requirements. In contrast, mature sectors like finance and healthcare will adapt more smoothly. The disparity will expose structural weaknesses in organizations unfamiliar with continuous compliance, making them attractive targets for attackers exploiting regulatory confusion," said Niels Fenger.

No comments:

Post a Comment