Daily Tech Digest - February 04, 2025


Quote for the day:

"Develop success from failures. Discouragement and failure are two of the surest stepping stones to success." -- Dale Carnegie


Technology skills gap plagues industries, and upskilling is a moving target

“The deepening threat landscape and rapidly evolving high-momentum technologies like AI are forcing organizations to move with lightning speed to fill specific gaps in their job architectures, and too often they are stumbling,” said David Foote, chief analyst at consultancy Foote Partners. To keep up with the rapidly changing landscape, Gartner suggests that organizations invest in agile learning for tech teams. “In the context of today’s AI-fueled accelerated disruption, many business leaders feel learning is too slow to respond to the volume, variety and velocity of skills needs,” said Chantal Steen, a senior director in Gartner’s HR practice. “Learning and development must become more agile to respond to changes faster and deliver learning more rapidly and more cost effectively.” Studies from staffing firm ManpowerGroup, hiring platform Indeed, and Deloitte consulting show that tech hiring will focus on candidates with flexible skills to meet evolving demands. “Employers know a skilled and adaptable workforce is key to navigating transformation, and many are prioritizing hiring and retaining people with in-demand flexible skills that can flex to where demand sits,” said Jonas Prising, ManpowerGroup chair and CEO.


Mixture of Experts (MoE) Architecture: A Deep Dive & Comparison of Top Open-Source Offerings

The application of MoE to open-source LLMs offers several key advantages. Firstly, it enables the creation of more powerful and sophisticated models without incurring the prohibitive costs associated with training and deploying massive, single-model architectures. Secondly, MoE facilitates the development of more specialized and efficient LLMs, tailored to specific tasks and domains. This specialization can lead to significant improvements in performance, accuracy, and efficiency across a wide range of applications, from natural language translation and code generation to personalized education and healthcare. The open-source nature of MoE-based LLMs promotes collaboration and innovation within the AI community. By making these models accessible to researchers, developers, and businesses, MoE fosters a vibrant ecosystem of experimentation, customization, and shared learning. ... Integrating MoE architecture into open-source LLMs represents a significant step forward in the evolution of artificial intelligence. By combining the power of specialization with the benefits of open-source collaboration, MoE unlocks new possibilities for creating more efficient, powerful, and accessible AI models that can revolutionize various aspects of our lives.


The DeepSeek Disruption and What It Means for CIOs

The emergence of DeepSeek has also revived a long-standing debate about open-source AI versus proprietary AI. Open-source AI is not a silver bullet. CIOs need to address critical risks as open-source AI models, if not secured properly, can be exposed to grave cyberthreats and adversarial attacks. While DeepSeek currently shows extraordinary efficiency, it requires an internal infrastructure, unlike GPT-4, which can seamlessly scale on OpenAI's cloud. Open-source AI models lack support and skills, thereby mandating users to build their own expertise, which could be demanding. "What happened with DeepSeek is actually super bullish. I look at this transition as an opportunity rather than a threat," said Steve Cohen, founder of Point72. ... The regulatory non-compliance adds another challenge as many governments restrict and disallow sensitive enterprise data from being processed by Chinese technologies. A possibility of potential backdoor can't be ruled out and this could open the enterprises to additional risks. CIOs need to conduct extensive security audits before deploying DeepSeek. rganizations can implement safeguards such as on-premises deployment to avoid data exposure. Integrating strict encryption protocols can help the AI interactions remain confidential, and performing rigorous security audits ensure the model's safety before deploying it into business workflows.


Why GreenOps will succeed where FinOps is failing

The cost-control focus fails to engage architects and engineers in rethinking how systems are designed, built and operated for greater efficiency. This lack of engagement results in inertia and minimal progress. For example, the database team we worked with in an organization new to the cloud launched all the AWS RDS database servers from dev through production, incurring a $600K a month cloud bill nine months before the scheduled production launch. The overburdened team was not thinking about optimizing costs, but rather optimizing their own time and getting out of the way of the migration team as quickly as possible. ... GreenOps — formed by merging FinOps, sustainability and DevOps — addresses the limitations of FinOps while integrating sustainability as a core principle. Green computing contributes to GreenOps by emphasizing energy-efficient design, resource optimization and the use of sustainable technologies and platforms. This foundational focus ensures that every system built under GreenOps principles is not only cost-effective but also minimizes its environmental footprint, aligning technological innovation with ecological responsibility. Moreover, we’ve found that providing emissions feedback to architects and engineers is a bigger motivator than cost to inspire them to design more efficient systems and build automation to shut down underutilized resources.


Best Practices for API Rate Limits and Quotas

Unlike short-term rate limits, the goal of quotas is to enforce business terms such as monetizing your APIs and protecting your business from high-cost overruns by customers. They measure customer utilization of your API over longer durations, such as per hour, per day, or per month. Quotas are not designed to prevent a spike from overwhelming your API. Rather, quotas regulate your API’s resources by ensuring a customer stays within their agreed contract terms. ... Even a protection mechanism like rate limiting could have errors. For example, a bad network connection with Redis could cause reading rate limit counters to fail. In such scenarios, it’s important not to artificially reject all requests or lock out users even though your Redis cluster is inaccessible. Your rate-limiting implementation should fail open rather than fail closed, meaning all requests are allowed even though the rate limit implementation is faulting. This also means rate limiting is not a workaround to poor capacity planning, as you should still have sufficient capacity to handle these requests or even design your system to scale accordingly to handle a large influx of new requests. This can be done through auto-scale, timeouts, and automatic trips that enable your API to still function.


Protecting Ultra-Sensitive Health Data: The Challenges

Protecting ultra-sensitive information "is an incredibly confusing and complicated and evolving part of the law," said regulatory attorney Kirk Nahra of the law firm WilmerHale. "HIPAA generally does not distinguish between categories of health information," he said. "There are exceptions - including the recent Dobbs rule - but these are not fundamental in their application, he said. Privacy protections related to abortion procedures are perhaps the most hotly debated type of patient information. For instance, last June - in response to the June 2022 Supreme Court's Dobbs ruling, which overturned the national right to abortion - the Biden administration's U.S. Department of Health and Human Services modified the HIPAA Privacy Rule to add additional safeguards for the access, use and disclosure of reproductive health information. The rule is aimed at protecting women from the use or disclosure of their reproductive health information when it is sought to investigate or impose liability on individuals, healthcare providers or others who seek, obtain, provide or facilitate reproductive healthcare that is lawful under the circumstances in which such healthcare is provided. But that rule is being challenged in federal court by 15 state attorneys general seeking to revoke the regulations.


Evolving threat landscape, rethinking cyber defense, and AI: Opportunties and risk

Businesses are firmly in attackers’ crosshairs. Financially motivated cybercriminals conduct ransomware attacks with record-breaking ransoms being paid by companies seeking to avoid business interruption. Others, including nation-state hackers, infiltrate companies to steal intellectual property and trade secrets to gain commercial advantage over competitors. Further, we regularly see critical infrastructure being targeted by nation-state cyberattacks designed to act as sleeper cells that can be activated in times of heightened tension. Companies are on the back foot. ... As zero trust disrupts obsolete firewall and VPN-based security, legacy vendors are deploying firewalls and VPNs as virtual machines in the cloud and calling it zero trust architecture. This is akin to DVD hardware vendors deploying DVD players in a data center and calling it Netflix! It gives a false sense of security to customers. Organizations need to make sure they are really embracing zero trust architecture, which treats everyone as untrusted and ensures users connect to specific applications or services, rather than a corporate network. ... Unfortunately, the business world’s harnessing of AI for cyber defense has been slow compared to the speed of threat actors harnessing it for attacks. 


Six essential tactics data centers can follow to achieve more sustainable operations

By adjusting energy consumption based on real-time demand, data centers can significantly enhance their operational efficiency. For example, during periods of low activity, power can be conserved by reducing energy use, thus minimizing waste without compromising performance. This includes dynamic power management technologies in switch and router systems, such as shutting down unused line cards or ports and controlling fan speeds to optimize energy use based on current needs. Conversely, during peak demand, operations can be scaled up to meet increased requirements, ensuring consistent and reliable service levels. Doing so not only reduces unnecessary energy expenditure, but also contributes to sustainability efforts by lowering the environmental impact associated with energy-intensive operations. ... Heat generated from data center operations can be captured and repurposed to provide heating for nearby facilities and homes, transforming waste into a valuable resource. This approach promotes a circular energy model, where excess heat is redirected instead of discarded, reducing the environmental impact. Integrating data centers into local energy systems enhances sustainability and offers tangible benefits to surrounding areas and communities whilst addressing broader energy efficiency goals.


The Engineer’s Guide to Controlling Configuration Drift

“Preventing configuration drift is the bedrock for scalable, resilient infrastructure,” comments Mayank Bhola, CTO of LambdaTest, a cloud-based testing platform that provides instant infrastructure. “At scale, even small inconsistencies can snowball into major operational inefficiencies. We encountered these challenges [user-facing impact] as our infrastructure scaled to meet growing demands. Tackling this challenge head-on is not just about maintaining order; it’s about ensuring the very foundation of your technology is reliable. And so, by treating infrastructure as code and automating compliance, we at LambdaTest ensure every server, service, and setting aligns with our growth objectives, no matter how fast we scale. Adopting drift detection and remediation strategies is imperative for maintaining a resilient infrastructure. ... The policies you set at the infrastructure level, such as those for SSH access, add another layer of security to your infrastructure. Ansible allows you to define policies like removing root access, changing the default SSH port, and setting user command permissions. “It’s easy to see who has access and what they can execute,” Kampa remarks. “This ensures resilient infrastructure, keeping things secure and allowing you to track who did what if something goes wrong.”


Strategies for mitigating bias in AI models

The need to address bias in AI models stems from the fundamental principle of fairness. AI systems should treat all individuals equitably, regardless of their background. However, if the training data reflects existing societal biases, the model will likely reproduce and even exaggerate those biases in its outputs. For instance, if a facial recognition system is primarily trained on images of one demographic, it may exhibit lower accuracy rates for other groups, potentially leading to discriminatory outcomes. Similarly, a natural language processing model trained on predominantly Western text may struggle to understand or accurately represent nuances in other languages and cultures. ... Incorporating contextual data is essential for AI systems to provide relevant and culturally appropriate responses. Beyond basic language representation, models should be trained on datasets that capture the history, geography, and social issues of the populations they serve. For instance, an AI system designed for India should include data on local traditions, historical events, legal frameworks, and social challenges specific to the region. This ensures that AI-generated responses are not only accurate but also culturally sensitive and context-aware. Additionally, incorporating diverse media formats such as text, images, and audio from multiple sources enhances the model’s ability to recognise and adapt to varying communication styles.

No comments:

Post a Comment