Pages

Daily Tech Digest - June 25, 2025


Quote for the day:

"Your present circumstances don’t determine where you can go; they merely determine where you start." -- Nido Qubein



Why data observability is the missing layer of modern networking

You might hear people use these terms interchangeably, but they’re not the same thing. Visibility is about what you can see – dashboard statistics, logs, uptime numbers, bandwidth figures, the raw data that tells you what’s happening across your network. Observability, on the other hand, is about what that data actually means. It’s the ability to interpret, analyse, and act on those insights. It’s not just about seeing a traffic spike but instead understanding why it happened. It’s not just spotting a latency issue, but knowing which apps are affected and where the bottleneck sits. ... Today, connectivity needs to be smart, agile, and scalable. It’s about building infrastructure that supports cloud, remote work, and everything in between. Whether you’re adding a new site, onboarding a remote team, or launching a cloud-hosted app, your network should be able to scale and respond at speed. Then there’s security, a non-negotiable layer that protects your entire ecosystem. Great security isn’t about throwing up walls, it’s about creating confidence. That means deploying zero trust principles, segmenting access, detecting threats in real time, and encrypting data, without making users lives harder. ... Finally, we come to observability. Arguably the most unappreciated of the three but quickly becoming essential. 


6 Key Security Risks in LLMs: A Platform Engineer’s Guide

Prompt injection is the AI-era equivalent of SQL injection. Attackers craft malicious inputs to manipulate an LLM, bypass safeguards or extract sensitive data. These attacks range from simple jailbreak prompts that override safety rules to more advanced exploits that influence backend systems. ... Model extraction attacks allow adversaries to systematically query an LLM to reconstruct its knowledge base or training data, essentially cloning its capabilities. These attacks often rely on automated scripts submitting millions of queries to map the model’s responses. One common technique, model inversion, involves strategically structured inputs that extract sensitive or proprietary information embedded in the model. Attackers may also use repeated, incremental queries with slight variations to amass a dataset that mimics the original training data. ... On the output side, an LLM might inadvertently reveal private information embedded in its dataset or previously entered user data. A common risk scenario involves users unknowingly submitting financial records or passwords into an AI-powered chatbot, which could then store, retrieve or expose this data unpredictably. With cloud-based LLMs, the risk extends further. Data from one organization could surface in another’s responses.


Adopting Agentic AI: Ethical Governance, Business Impact, Talent Demand, and Data Security

Agentic AI introduces a spectrum of ethical challenges that demand proactive governance. Given its capacity for independent decision-making, there is a heightened need for transparent, accountable, and ethically driven AI models. Ethical governance in Agentic AI revolves around establishing robust policies that govern decision logic, bias mitigation, and accountability. Organizations leveraging Agentic AI must prioritize fairness, inclusivity, and regulatory compliance to avoid unintended consequences. ... The integration of Agentic AI into business ecosystems promises not just automation but strategic enhancement of decision-making. These AI agents are designed to process real-time data, predict market shifts, and autonomously execute decisions that would traditionally require human intervention. In sectors such as finance, healthcare, and manufacturing, Agentic AI is optimizing supply chains, enhancing predictive analytics, and streamlining operations with unparalleled accuracy. ... One of the major concerns surrounding Agentic AI is data security. Autonomous decision-making systems require vast amounts of real-time data to function effectively, raising questions about data privacy, ownership, and cybersecurity. Cyber threats aimed at exploiting autonomous decision-making could have severe consequences, especially in sectors like finance and healthcare.


Unveiling Supply Chain Transformation: IIoT and Digital Twins

Digital twins and IIoTs are evolving technologies that are transforming the digital landscape of supply chain transformation. The IIoT aims to connect to actual physical sensors and actuators. On the other hand, DTs are replica copies that virtually represent the physical components. The DTs are invaluable for testing and simulating design parameters instead of disrupting production elements. ... Contrary to generic IoT, which is more oriented towards consumers, the IIoT enables the communication and interconnection between different machines, industrial devices, and sensors within a supply chain management ecosystem with the aim of business optimization and efficiency. The incubation of IIoT in supply chain management systems aims to enable real-time monitoring and analysis of industrial environments, including manufacturing, logistics management, and supply chain. It boosts efforts to increase productivity, cut downtime, and facilitate information and accurate decision-making. ... A supply chain equipped with IIoT will be a main ingredient in boosting real-time monitoring and enabling informed decision-making. Every stage of the supply chain ecosystem will have the impact of IIoT, like automated inventory management, health monitoring of goods and their tracking, analytics, and real-time response to meet the current marketplace. 


The state of cloud security

An important complicating factor in all this is that customers don’t always know what’s happening in cloud data centers. At the same time, De Jong acknowledges that on-premises environments have the same problem. “There’s a spectrum of issues, and a lot of overlap,” he says, something Wesley SwartelĂ© agrees with: “You have to align many things between on-prem and cloud.” Andre Honders points to a specific aspect of the cloud: “You can be in a shared environment with ten other customers. This means you have to deal with different visions and techniques that do not exist on-premises.” This is certainly the case. There are plenty of worst case scenarios to consider in the public cloud. ... However, a major bottleneck remains the lack of qualified personnel. We hear this all the time when it comes to security. And in other IT fields too, as it happens, meaning one could draw a society-wide conclusion. Nevertheless, staff shortages are perhaps more acute in this sector. Erik de Jong sees society as a whole having similar problems, at any rate. “This is not an IT problem. Just ask painters. In every company, a small proportion of the workforce does most of the work.” Wesley SwartelĂ© agrees it is a challenge for organizations in this industry to find the right people. “Finding a good IT professional with the right mindset is difficult.


As AI reshapes the enterprise, security architecture can’t afford to lag behind

Technology works both ways – it enables the attacker and the smart defender. Cybercriminals are already capitalising on its potential, using open source AI models like DeepSeek and Grok to automate reconnaissance, craft sophisticated phishing campaigns, and produce deepfakes that can convincingly impersonate executives or business partners. What makes this especially dangerous is that these tools don’t just improve the quality of attacks; they multiply their volume. That’s why enterprises need to go beyond reactive defenses and start embedding AI-aware policies into their core security fabric. It starts with applying Zero Trust to AI interactions, limiting access based on user roles, input/output restrictions, and verified behaviour. ... As attackers deploy AI to craft polymorphic malware and mimic legitimate user behaviour, traditional defenses struggle to keep up. AI is now a critical part of the enterprise security toolkit, helping CISOs and security teams move from reactive to proactive threat defense. It enables rapid anomaly detection, surfaces hidden risks earlier in the kill chain, and supports real-time incident response by isolating threats before they can spread. But AI alone isn’t enough. Security leaders must strengthen data privacy and security by implementing full-spectrum DLP, encryption, and input monitoring to protect sensitive data from exposure, especially as AI interacts with live systems. 


Identity Is the New Perimeter: Why Proofing and Verification Are Business Imperatives

Digital innovation, growing cyber threats, regulatory pressure, and rising consumer expectations all drive the need for strong identity proofing and verification. Here is why it is more important than ever:Combatting Fraud and Identity Theft: Criminals use stolen identities to open accounts, secure loans, or gain unauthorized access. Identity proofing is the first defense against impersonation and financial loss. Enabling Secure Digital Access: As more services – from banking to healthcare – go digital, strong remote verification ensures secure access and builds trust in online transactions. Regulatory Compliance: Laws such as KYC, AML, GDPR, HIPAA, and CIPA require identity verification to protect consumers and prevent misuse. Compliance is especially critical in finance, healthcare, and government sectors. Preventing Account Takeover (ATO): Even legitimate accounts are at risk. Continuous verification at key moments (e.g., password resets, high-risk actions) helps prevent unauthorized access via stolen credentials or SIM swapping. Enabling Zero Trust Security: Zero Trust assumes no inherent trust in users or devices. Continuous identity verification is central to enforcing this model, especially in remote or hybrid work environments. 


Why should companies or organizations convert to FIDO security keys?

FIDO security keys significantly reduce the risk of phishing, credential theft, and brute-force attacks. Because they don’t rely on shared secrets like passwords, they can’t be reused or intercepted. Their phishing-resistant protocol ensures authentication is only completed with the correct web origin. FIDO security keys also address insider threats and endpoint vulnerabilities by requiring physical presence, further enhancing protection, especially in high-security environments such as healthcare or public administration. ... In principle, any organization that prioritizes a secure IT infrastructure stands to benefit from adopting FIDO-based multi-factor authentication. Whether it’s a small business protecting customer data or a global enterprise managing complex access structures, FIDO security keys provide a robust, phishing-resistant alternative to passwords. That said, sectors with heightened regulatory requirements, such as healthcare, finance, public administration, and critical infrastructure, have particularly strong incentives to adopt strong authentication. In these fields, the risk of breaches is not only costly but can also have legal and operational consequences. FIDO security keys are also ideal for restricted environments, such as manufacturing floors or emergency rooms, where smartphones may not be permitted. 


Data Warehouse vs. Data Lakehouse

Data warehouses and data lakehouses have emerged as two prominent adversaries in the data storage and analytics markets, each with advantages and disadvantages. The primary difference between these two data storage platforms is that while the data warehouse is capable of handling only structured and semi-structured data, the data lakehouse can store unlimited amounts of both structured and unstructured data – and without any limitations. ... Traditional data warehouses have long supported all types of business professionals in their data storage and analytics endeavors. This approach involves ingesting structured data into a centralized repository, with a focus on warehouse integration and business intelligence reporting. Enter the data lakehouse approach, which is vastly superior for deep-dive data analysis. The lakehouse has successfully blended characteristics of the data warehouse and the data lake to create a scalable and unrestricted solution. The key benefit of this approach is that it enables data scientists to quickly extract insights from raw data with advanced AI tools. ... Although a data warehouse supports BI use cases and provides a “single source of truth” for analytics and reporting purposes, it can also become difficult to manage as new data sources emerge. The data lakehouse has redefined how global businesses store and process data. 


AI or Data Governance? Gartner Says You Need Both

Data and analytics leaders, such as chief data officers, or CDOs, and chief data and analytics officers, or CDAOs, play a significant role in driving their organizations' data and analytics, D&A, successes, which are necessary to show business value from AI projects. Gartner predicts that by 2028, 80% of gen AI business apps will be developed on existing data management platforms. Their analysts say, "This is the best time to be in data and analytics," and CDAOs need to embrace the AI opportunity eyed by others in the C-suite, or they will be absorbed into other technical functions. With high D&A ambitions and AI pilots becoming increasingly ubiquitous, focus is shifting toward consistent execution and scaling. But D&A leaders are overwhelmed with their routine data management tasks and need a new AI strategy. ... "We've never been good at governance, and now AI demands that we be even faster, which means you have to take more risks and be prepared to fail. We have to accept two things: Data will never be fully governed. Secondly, attempting to fully govern data before delivering AI is just not realistic. We need a more practical solution like trust models," Zaidi said. He said trust models provide a trust rating for data assets by examining their value, lineage and risk. They offer up-to-date information on data trustworthiness and are crucial for fostering confidence. 

No comments:

Post a Comment